Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2284

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2284

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2284 (TID: 11757), and it has 798 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric70 unique values
0 missing
molecule_id (row identifier)nominal798 unique values
0 missing
SsssCHnumeric179 unique values
0 missing
O.056numeric6 unique values
0 missing
C.008numeric7 unique values
0 missing
P_VSA_MR_3numeric18 unique values
0 missing
SsOHnumeric241 unique values
0 missing
CATS2D_03_DAnumeric8 unique values
0 missing
P_VSA_LogP_3numeric129 unique values
0 missing
nOxolanesnumeric3 unique values
0 missing
ATS1snumeric484 unique values
0 missing
GGI8numeric260 unique values
0 missing
nOHsnumeric4 unique values
0 missing
IC2numeric507 unique values
0 missing
TIC1numeric631 unique values
0 missing
TIC2numeric633 unique values
0 missing
NsssCHnumeric7 unique values
0 missing
Chi0_AEA.bo.numeric476 unique values
0 missing
Chi0_AEA.dm.numeric476 unique values
0 missing
Chi0_AEA.ed.numeric476 unique values
0 missing
Chi0_AEA.ri.numeric476 unique values
0 missing
Chi0_EAnumeric476 unique values
0 missing
Chi0_EA.ri.numeric698 unique values
0 missing
Eig15_AEA.bo.numeric397 unique values
0 missing
Eig15_AEA.dm.numeric492 unique values
0 missing
HDcpxnumeric252 unique values
0 missing
IDMnumeric545 unique values
0 missing
IVDMnumeric267 unique values
0 missing
ON0numeric140 unique values
0 missing
S0Knumeric216 unique values
0 missing
SpMaxA_AEA.dm.numeric172 unique values
0 missing
TIC3numeric532 unique values
0 missing
TIC4numeric493 unique values
0 missing
X1numeric481 unique values
0 missing
X1Madnumeric704 unique values
0 missing
Chi0_EA.dm.numeric604 unique values
0 missing
Eig13_EAnumeric391 unique values
0 missing
Eig13_EA.ed.numeric448 unique values
0 missing
SM07_AEA.dm.numeric391 unique values
0 missing
SM08_AEA.ri.numeric448 unique values
0 missing
Eig10_AEA.ri.numeric534 unique values
0 missing
Eig10_EAnumeric450 unique values
0 missing
SM04_AEA.dm.numeric450 unique values
0 missing
CATS2D_08_DDnumeric5 unique values
0 missing
CATS2D_07_DDnumeric5 unique values
0 missing
BIDnumeric145 unique values
0 missing
CIDnumeric383 unique values
0 missing
Eig15_EA.bo.numeric467 unique values
0 missing
Eta_Fnumeric777 unique values
0 missing
Eta_FLnumeric663 unique values
0 missing
IDDEnumeric299 unique values
0 missing
IDDMnumeric278 unique values
0 missing
LPRSnumeric643 unique values
0 missing
nSKnumeric40 unique values
0 missing
X0numeric321 unique values
0 missing
nRORnumeric3 unique values
0 missing
O.059numeric6 unique values
0 missing
H.047numeric29 unique values
0 missing
Eig10_EA.bo.numeric500 unique values
0 missing
ATS7vnumeric639 unique values
0 missing
ATS8vnumeric637 unique values
0 missing
Eig11_AEA.ri.numeric513 unique values
0 missing
Eig13_AEA.ri.numeric506 unique values
0 missing
Eig13_EA.ri.numeric491 unique values
0 missing
Eig14_AEA.dm.numeric482 unique values
0 missing
Eig15_AEA.ri.numeric479 unique values
0 missing
Eig15_EA.ed.numeric452 unique values
0 missing
Eig15_EA.ri.numeric501 unique values
0 missing
SM10_AEA.ri.numeric452 unique values
0 missing
SNarnumeric175 unique values
0 missing
SpAD_EA.ri.numeric765 unique values
0 missing

62 properties

798
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
6.33
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.22
Third quartile of skewness among attributes of the numeric type.
72.46
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.78
First quartile of kurtosis among attributes of the numeric type.
4.5
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.1
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
7.68
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.91
Mean of means among attributes of the numeric type.
0.33
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.6
First quartile of standard deviation of attributes of the numeric type.
0.76
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
5.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Number of attributes divided by the number of instances.
1.39
Mean skewness among attributes of the numeric type.
3.15
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
7.63
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.37
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.72
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.9
Second quartile (Median) of standard deviation of attributes of the numeric type.
55.75
Maximum kurtosis among attributes of the numeric type.
-2.28
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
180.88
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.38
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
15.27
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.34
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task