Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2492

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2492

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2492 (TID: 10635), and it has 639 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric381 unique values
0 missing
molecule_id (row identifier)nominal639 unique values
0 missing
MAXDPnumeric533 unique values
0 missing
nArCONHRnumeric2 unique values
0 missing
C.002numeric17 unique values
0 missing
SpMin6_Bh.s.numeric321 unique values
0 missing
CATS2D_02_DAnumeric11 unique values
0 missing
SpMax3_Bh.v.numeric350 unique values
0 missing
Eig04_AEA.ri.numeric398 unique values
0 missing
SdOnumeric301 unique values
0 missing
SpMaxA_EA.bo.numeric178 unique values
0 missing
TRSnumeric38 unique values
0 missing
Eig04_EA.ed.numeric355 unique values
0 missing
SM13_AEA.dm.numeric355 unique values
0 missing
Eig09_AEA.ri.numeric352 unique values
0 missing
Eig04_AEA.ed.numeric322 unique values
0 missing
P_VSA_LogP_2numeric163 unique values
0 missing
X2vnumeric564 unique values
0 missing
SpMax6_Bh.i.numeric338 unique values
0 missing
SpMin6_Bh.e.numeric332 unique values
0 missing
SpMax7_Bh.m.numeric367 unique values
0 missing
ATSC3mnumeric578 unique values
0 missing
Eig06_EAnumeric333 unique values
0 missing
SM14_AEA.bo.numeric333 unique values
0 missing
SpMax3_Bh.i.numeric324 unique values
0 missing
SpMax3_Bh.e.numeric346 unique values
0 missing
X3solnumeric436 unique values
0 missing
Eig06_AEA.ri.numeric433 unique values
0 missing
nArCONR2numeric2 unique values
0 missing
ATSC3vnumeric563 unique values
0 missing
SpMax8_Bh.v.numeric362 unique values
0 missing
X5solnumeric435 unique values
0 missing
X4solnumeric442 unique values
0 missing
NdssCnumeric13 unique values
0 missing
Eig09_EA.ri.numeric350 unique values
0 missing
ATS2pnumeric419 unique values
0 missing
piPC05numeric392 unique values
0 missing
Eig06_EA.ri.numeric431 unique values
0 missing
Eig10_AEA.bo.numeric303 unique values
0 missing
SRW08numeric356 unique values
0 missing
Eig12_AEA.bo.numeric337 unique values
0 missing
GATS1snumeric329 unique values
0 missing
SpMax8_Bh.m.numeric361 unique values
0 missing
CATS2D_09_AAnumeric11 unique values
0 missing
CATS2D_08_AAnumeric14 unique values
0 missing
X3numeric412 unique values
0 missing
CATS2D_03_DLnumeric18 unique values
0 missing
SpMin2_Bh.i.numeric286 unique values
0 missing
SpMin8_Bh.e.numeric340 unique values
0 missing
ATSC3pnumeric566 unique values
0 missing
SpMin8_Bh.i.numeric317 unique values
0 missing
Eig11_AEA.bo.numeric306 unique values
0 missing
Eig11_EA.bo.numeric316 unique values
0 missing
Eig13_AEA.bo.numeric321 unique values
0 missing
SpMax7_Bh.v.numeric332 unique values
0 missing
MPC05numeric152 unique values
0 missing
Eig12_AEA.ed.numeric281 unique values
0 missing
Eig10_EA.bo.numeric305 unique values
0 missing
Eig05_AEA.bo.numeric359 unique values
0 missing
SpMin2_Bh.e.numeric271 unique values
0 missing
SpMax8_Bh.p.numeric375 unique values
0 missing
Eig08_AEA.bo.numeric333 unique values
0 missing
ATS2vnumeric418 unique values
0 missing
X2numeric412 unique values
0 missing
Eig04_AEA.dm.numeric360 unique values
0 missing
D.Dtr06numeric413 unique values
0 missing
SpAD_AEA.dm.numeric515 unique values
0 missing
Eig13_AEA.ed.numeric300 unique values
0 missing
MWC05numeric350 unique values
0 missing
CATS2D_01_LLnumeric33 unique values
0 missing
Eig11_AEA.ed.numeric282 unique values
0 missing

62 properties

639
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
7.51
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
3.13
Third quartile of skewness among attributes of the numeric type.
222.88
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.72
First quartile of kurtosis among attributes of the numeric type.
2.73
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.42
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
10.4
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.35
Mean of means among attributes of the numeric type.
-0.36
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.4
First quartile of standard deviation of attributes of the numeric type.
0.11
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.56
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
1.37
Mean skewness among attributes of the numeric type.
2.71
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
6.92
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.45
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
62.7
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
218.46
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
13.54
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
6.5
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.38
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task