Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2164

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2164

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2164 (TID: 10083), and it has 128 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric85 unique values
0 missing
molecule_id (row identifier)nominal128 unique values
0 missing
nCarnumeric18 unique values
0 missing
C.027numeric4 unique values
0 missing
SpMax3_Bh.e.numeric100 unique values
0 missing
SpMax3_Bh.p.numeric104 unique values
0 missing
SpMax3_Bh.v.numeric108 unique values
0 missing
NRSnumeric6 unique values
0 missing
Eig03_EA.bo.numeric110 unique values
0 missing
SM13_AEA.ri.numeric110 unique values
0 missing
nABnumeric17 unique values
0 missing
SpMax3_Bh.i.numeric97 unique values
0 missing
nBMnumeric23 unique values
0 missing
Ucnumeric23 unique values
0 missing
SaaNnumeric78 unique values
0 missing
Eig01_AEA.ri.numeric101 unique values
0 missing
SpMax_AEA.ri.numeric101 unique values
0 missing
NaasCnumeric10 unique values
0 missing
Rperimnumeric20 unique values
0 missing
H.049numeric4 unique values
0 missing
SpMax3_Bh.m.numeric97 unique values
0 missing
SM11_EA.ri.numeric125 unique values
0 missing
SM12_EA.ri.numeric121 unique values
0 missing
SM13_EA.ri.numeric123 unique values
0 missing
SM14_EA.ri.numeric125 unique values
0 missing
SM15_EA.ri.numeric121 unique values
0 missing
Eta_betaPnumeric35 unique values
0 missing
RCInumeric28 unique values
0 missing
RFDnumeric25 unique values
0 missing
N.075numeric6 unique values
0 missing
NaaNnumeric6 unique values
0 missing
PCDnumeric120 unique values
0 missing
SM10_EA.ri.numeric124 unique values
0 missing
JGI4numeric33 unique values
0 missing
SM10_EA.ed.numeric121 unique values
0 missing
SM11_EA.ed.numeric121 unique values
0 missing
SM12_EA.ed.numeric122 unique values
0 missing
SM13_EA.ed.numeric121 unique values
0 missing
SM14_EA.ed.numeric121 unique values
0 missing
SM15_EA.ed.numeric118 unique values
0 missing
SM12_AEA.ed.numeric123 unique values
0 missing
SM13_AEA.ed.numeric124 unique values
0 missing
nCsp2numeric21 unique values
0 missing
ALOGPnumeric118 unique values
0 missing
ALOGP2numeric120 unique values
0 missing
SM09_EA.ri.numeric124 unique values
0 missing
Eig01_EA.ri.numeric97 unique values
0 missing
SpMax_EA.ri.numeric97 unique values
0 missing
Eig01_EA.ed.numeric100 unique values
0 missing
SM10_AEA.dm.numeric100 unique values
0 missing
SpMax_EA.ed.numeric100 unique values
0 missing
SpDiam_EA.ri.numeric96 unique values
0 missing
piIDnumeric120 unique values
0 missing
SpDiam_EA.ed.numeric103 unique values
0 missing
SM09_AEA.ed.numeric120 unique values
0 missing
SM10_AEA.ed.numeric118 unique values
0 missing
P_VSA_p_3numeric118 unique values
0 missing
P_VSA_v_3numeric118 unique values
0 missing
SM07_EA.ed.numeric121 unique values
0 missing
SM08_EA.ed.numeric122 unique values
0 missing
Eta_FL_Anumeric83 unique values
0 missing
SM14_EAnumeric122 unique values
0 missing
SM15_EAnumeric121 unique values
0 missing
Eig01_AEA.ed.numeric86 unique values
0 missing
SpMax_AEA.ed.numeric86 unique values
0 missing
Eig02_EA.bo.numeric110 unique values
0 missing
SM12_AEA.ri.numeric110 unique values
0 missing
C.008numeric5 unique values
0 missing
SM11_AEA.ed.numeric122 unique values
0 missing

62 properties

128
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
3.42
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.84
Third quartile of skewness among attributes of the numeric type.
45.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.18
First quartile of kurtosis among attributes of the numeric type.
2.1
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.53
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.32
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
14.59
Mean of means among attributes of the numeric type.
-0.48
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.34
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.58
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.54
Number of attributes divided by the number of instances.
0.24
Mean skewness among attributes of the numeric type.
11.17
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
2.81
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.56
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.62
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.99
Second quartile (Median) of standard deviation of attributes of the numeric type.
19.61
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
130.67
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.5
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
17.62
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.95
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task