Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5373

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5373

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5373 (TID: 10294), and it has 342 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric271 unique values
0 missing
molecule_id (row identifier)nominal342 unique values
0 missing
FCFP4_1024b40numeric2 unique values
0 missing
FCFP4_1024b954numeric2 unique values
0 missing
FCFP4_1024b540numeric2 unique values
0 missing
FCFP4_1024b933numeric2 unique values
0 missing
FCFP4_1024b940numeric2 unique values
0 missing
FCFP4_1024b592numeric2 unique values
0 missing
FCFP4_1024b698numeric2 unique values
0 missing
FCFP4_1024b75numeric2 unique values
0 missing
FCFP4_1024b165numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b957numeric2 unique values
0 missing
FCFP4_1024b8numeric2 unique values
0 missing
FCFP4_1024b280numeric2 unique values
0 missing
FCFP4_1024b614numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b562numeric2 unique values
0 missing
FCFP4_1024b48numeric2 unique values
0 missing
FCFP4_1024b888numeric2 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing
FCFP4_1024b156numeric2 unique values
0 missing
FCFP4_1024b507numeric2 unique values
0 missing
FCFP4_1024b59numeric2 unique values
0 missing
FCFP4_1024b25numeric2 unique values
0 missing
FCFP4_1024b220numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b520numeric2 unique values
0 missing
FCFP4_1024b196numeric2 unique values
0 missing
FCFP4_1024b800numeric2 unique values
0 missing
FCFP4_1024b260numeric2 unique values
0 missing
FCFP4_1024b17numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b771numeric2 unique values
0 missing
FCFP4_1024b723numeric2 unique values
0 missing
FCFP4_1024b892numeric2 unique values
0 missing
FCFP4_1024b867numeric2 unique values
0 missing
FCFP4_1024b105numeric2 unique values
0 missing
FCFP4_1024b375numeric2 unique values
0 missing
FCFP4_1024b883numeric2 unique values
0 missing
FCFP4_1024b618numeric2 unique values
0 missing
FCFP4_1024b875numeric2 unique values
0 missing
FCFP4_1024b413numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric1 unique values
0 missing
FCFP4_1024b1001numeric1 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric1 unique values
0 missing
FCFP4_1024b1010numeric1 unique values
0 missing
FCFP4_1024b1011numeric1 unique values
0 missing
FCFP4_1024b1012numeric2 unique values
0 missing
FCFP4_1024b1013numeric1 unique values
0 missing
FCFP4_1024b1014numeric2 unique values
0 missing
FCFP4_1024b1015numeric2 unique values
0 missing
FCFP4_1024b1016numeric1 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b1019numeric2 unique values
0 missing
FCFP4_1024b102numeric1 unique values
0 missing
FCFP4_1024b1020numeric2 unique values
0 missing
FCFP4_1024b1021numeric1 unique values
0 missing
FCFP4_1024b1022numeric1 unique values
0 missing
FCFP4_1024b1023numeric1 unique values
0 missing
FCFP4_1024b1024numeric1 unique values
0 missing
FCFP4_1024b103numeric1 unique values
0 missing
FCFP4_1024b104numeric1 unique values
0 missing
FCFP4_1024b106numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b109numeric1 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b110numeric2 unique values
0 missing
FCFP4_1024b111numeric2 unique values
0 missing
FCFP4_1024b112numeric1 unique values
0 missing
FCFP4_1024b113numeric1 unique values
0 missing
FCFP4_1024b114numeric2 unique values
0 missing
FCFP4_1024b115numeric1 unique values
0 missing
FCFP4_1024b116numeric1 unique values
0 missing
FCFP4_1024b117numeric2 unique values
0 missing
FCFP4_1024b119numeric2 unique values
0 missing
FCFP4_1024b12numeric2 unique values
0 missing
FCFP4_1024b120numeric2 unique values
0 missing
FCFP4_1024b121numeric1 unique values
0 missing
FCFP4_1024b122numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b124numeric1 unique values
0 missing
FCFP4_1024b125numeric1 unique values
0 missing
FCFP4_1024b126numeric1 unique values
0 missing
FCFP4_1024b127numeric1 unique values
0 missing
FCFP4_1024b128numeric2 unique values
0 missing
FCFP4_1024b129numeric1 unique values
0 missing
FCFP4_1024b13numeric1 unique values
0 missing
FCFP4_1024b130numeric2 unique values
0 missing

62 properties

342
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
18.49
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
6.8
Third quartile of skewness among attributes of the numeric type.
1.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.04
First quartile of kurtosis among attributes of the numeric type.
0.35
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
49.05
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.2
Mean of means among attributes of the numeric type.
0.56
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0
First quartile of standard deviation of attributes of the numeric type.
0.04
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
11.16
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.3
Number of attributes divided by the number of instances.
4.8
Mean skewness among attributes of the numeric type.
0.03
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.2
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.62
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.01
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.16
Second quartile (Median) of standard deviation of attributes of the numeric type.
342
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
6.86
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
44.54
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
99.04
Percentage of numeric attributes.
0.16
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.27
Minimum skewness among attributes of the numeric type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task