Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4599

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4599

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4599 (TID: 30023), and it has 526 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric155 unique values
0 missing
molecule_id (row identifier)nominal526 unique values
0 missing
CATS2D_05_ALnumeric19 unique values
0 missing
CATS2D_06_ALnumeric20 unique values
0 missing
NRSnumeric5 unique values
0 missing
CATS2D_07_ALnumeric20 unique values
0 missing
Eig15_AEA.ri.numeric339 unique values
0 missing
Eig01_EA.bo.numeric258 unique values
0 missing
SM11_AEA.ri.numeric258 unique values
0 missing
SpDiam_EA.bo.numeric258 unique values
0 missing
SpMax_EA.bo.numeric258 unique values
0 missing
Eig14_EA.ed.numeric333 unique values
0 missing
SM09_AEA.ri.numeric333 unique values
0 missing
TRSnumeric31 unique values
0 missing
nCICnumeric9 unique values
0 missing
Eig14_AEA.ri.numeric352 unique values
0 missing
Eig14_EAnumeric293 unique values
0 missing
SM08_AEA.dm.numeric293 unique values
0 missing
Rperimnumeric29 unique values
0 missing
Eig14_AEA.bo.numeric319 unique values
0 missing
H.047numeric33 unique values
0 missing
LLS_02numeric5 unique values
0 missing
SM15_EA.bo.numeric368 unique values
0 missing
Eig14_AEA.dm.numeric329 unique values
0 missing
LLS_01numeric7 unique values
0 missing
Eig15_AEA.bo.numeric335 unique values
0 missing
SM14_EA.bo.numeric368 unique values
0 missing
Polnumeric64 unique values
0 missing
piPC08numeric399 unique values
0 missing
Eig13_EA.ri.numeric362 unique values
0 missing
SpDiam_AEA.ri.numeric304 unique values
0 missing
ATSC5inumeric449 unique values
0 missing
SpDiam_AEA.bo.numeric310 unique values
0 missing
SaasCnumeric496 unique values
0 missing
ATSC6mnumeric514 unique values
0 missing
Eig13_AEA.ri.numeric368 unique values
0 missing
SpMin3_Bh.p.numeric270 unique values
0 missing
SM13_EA.bo.numeric368 unique values
0 missing
SM13_EA.ed.numeric385 unique values
0 missing
D.Dtr09numeric264 unique values
0 missing
ATSC5vnumeric499 unique values
0 missing
ATSC2vnumeric487 unique values
0 missing
SpMin3_Bh.s.numeric315 unique values
0 missing
SM12_EA.bo.numeric368 unique values
0 missing
nArNHRnumeric3 unique values
0 missing
SssCH2numeric377 unique values
0 missing
ATSC1vnumeric476 unique values
0 missing
SM10_EA.bo.numeric367 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
Eig15_AEA.dm.numeric336 unique values
0 missing
ATSC6vnumeric499 unique values
0 missing
SpMin4_Bh.v.numeric330 unique values
0 missing
SpDiam_EA.ed.numeric350 unique values
0 missing
nABnumeric25 unique values
0 missing
CIC3numeric373 unique values
0 missing
NaasCnumeric14 unique values
0 missing
nHnumeric42 unique values
0 missing
P_VSA_MR_1numeric82 unique values
0 missing
SM11_EA.bo.numeric368 unique values
0 missing
ATSC1mnumeric483 unique values
0 missing
X0solnumeric344 unique values
0 missing
SpMin4_Bh.p.numeric331 unique values
0 missing
SpMin4_Bh.e.numeric336 unique values
0 missing
SpMax4_Bh.v.numeric339 unique values
0 missing
SaaNnumeric427 unique values
0 missing
SpMax4_Bh.i.numeric344 unique values
0 missing
SM04_EA.bo.numeric340 unique values
0 missing
MPC08numeric211 unique values
0 missing
piPC04numeric346 unique values
0 missing
Eig01_AEA.bo.numeric252 unique values
0 missing

62 properties

526
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
10.06
Maximum skewness among attributes of the numeric type.
0.13
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.17
Third quartile of skewness among attributes of the numeric type.
82.87
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.44
First quartile of kurtosis among attributes of the numeric type.
3.86
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.35
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.06
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.09
Mean of means among attributes of the numeric type.
-0.86
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.29
First quartile of standard deviation of attributes of the numeric type.
0.28
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.35
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
-0.2
Mean skewness among attributes of the numeric type.
5.11
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.4
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.84
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.82
Second quartile (Median) of standard deviation of attributes of the numeric type.
172.6
Maximum kurtosis among attributes of the numeric type.
0.13
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
204.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.27
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
14.29
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.27
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task