Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5784

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5784

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5784 (TID: 101332), and it has 106 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric37 unique values
0 missing
molecule_id (row identifier)nominal106 unique values
0 missing
IC1numeric102 unique values
0 missing
nNnumeric9 unique values
0 missing
TPSA.NO.numeric97 unique values
0 missing
JGI2numeric43 unique values
0 missing
SsCH3numeric87 unique values
0 missing
JGTnumeric78 unique values
0 missing
N.numeric62 unique values
0 missing
P_VSA_i_4numeric79 unique values
0 missing
Uinumeric24 unique values
0 missing
piIDnumeric105 unique values
0 missing
P_VSA_m_2numeric106 unique values
0 missing
Eta_betaS_Anumeric61 unique values
0 missing
Eta_betanumeric77 unique values
0 missing
nBMnumeric25 unique values
0 missing
Ucnumeric25 unique values
0 missing
P_VSA_e_3numeric74 unique values
0 missing
AACnumeric97 unique values
0 missing
H.046numeric13 unique values
0 missing
IC0numeric97 unique values
0 missing
nHetnumeric14 unique values
0 missing
SIC0numeric73 unique values
0 missing
HNarnumeric70 unique values
0 missing
PDInumeric77 unique values
0 missing
P_VSA_MR_1numeric49 unique values
0 missing
SpMin1_Bh.m.numeric75 unique values
0 missing
N.075numeric6 unique values
0 missing
NaaNnumeric6 unique values
0 missing
SaaNnumeric69 unique values
0 missing
Eta_Fnumeric106 unique values
0 missing
Eta_FLnumeric104 unique values
0 missing
Eig03_EA.bo.numeric100 unique values
0 missing
piPC02numeric82 unique values
0 missing
SM02_EA.bo.numeric82 unique values
0 missing
SM04_EA.bo.numeric103 unique values
0 missing
SM13_AEA.ri.numeric100 unique values
0 missing
piPC04numeric98 unique values
0 missing
SpMaxA_EA.ed.numeric85 unique values
0 missing
PCDnumeric102 unique values
0 missing
TPSA.Tot.numeric99 unique values
0 missing
BLTA96numeric92 unique values
0 missing
BLTD48numeric87 unique values
0 missing
BLTF96numeric89 unique values
0 missing
MLOGPnumeric100 unique values
0 missing
MLOGP2numeric103 unique values
0 missing
piPC07numeric99 unique values
0 missing
X0Anumeric46 unique values
0 missing
AMWnumeric101 unique values
0 missing
ARRnumeric77 unique values
0 missing
ATSC1vnumeric105 unique values
0 missing
BIC0numeric65 unique values
0 missing
C.001numeric6 unique values
0 missing
C.003numeric4 unique values
0 missing
CATS2D_02_LLnumeric22 unique values
0 missing
CATS2D_03_LLnumeric22 unique values
0 missing
CATS2D_04_LLnumeric22 unique values
0 missing
CATS2D_05_LLnumeric21 unique values
0 missing
CATS2D_06_LLnumeric22 unique values
0 missing
CATS2D_08_LLnumeric19 unique values
0 missing
CIC1numeric103 unique values
0 missing
Eig01_EA.bo.numeric81 unique values
0 missing
Eta_betaPnumeric38 unique values
0 missing
Eta_betaP_Anumeric91 unique values
0 missing
Eta_F_Anumeric88 unique values
0 missing
Eta_FL_Anumeric74 unique values
0 missing
Eta_L_Anumeric74 unique values
0 missing

62 properties

106
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.63
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.01
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.43
Mean skewness among attributes of the numeric type.
4.05
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.83
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.34
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.67
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.14
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.69
Maximum kurtosis among attributes of the numeric type.
-4.12
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
239.94
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.62
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
8.23
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.78
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.89
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.19
Third quartile of skewness among attributes of the numeric type.
94.99
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.22
First quartile of kurtosis among attributes of the numeric type.
6.37
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.78
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.26
Mean of means among attributes of the numeric type.
-0.35
First quartile of skewness among attributes of the numeric type.
0.24
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task