Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3687

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3687

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3687 (TID: 11134), and it has 173 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric74 unique values
0 missing
molecule_id (row identifier)nominal173 unique values
0 missing
GGI6numeric118 unique values
0 missing
GGI7numeric105 unique values
0 missing
Eig05_EA.ed.numeric141 unique values
0 missing
SM14_AEA.dm.numeric141 unique values
0 missing
ATSC1snumeric158 unique values
0 missing
Eig05_AEA.bo.numeric137 unique values
0 missing
Eig05_EA.bo.numeric134 unique values
0 missing
SM15_AEA.ri.numeric134 unique values
0 missing
JGI7numeric25 unique values
0 missing
VvdwMGnumeric136 unique values
0 missing
Vxnumeric136 unique values
0 missing
Eig06_EAnumeric132 unique values
0 missing
SM14_AEA.bo.numeric132 unique values
0 missing
Ramnumeric15 unique values
0 missing
X3vnumeric170 unique values
0 missing
ATS2pnumeric137 unique values
0 missing
Chi1_EA.ri.numeric165 unique values
0 missing
Eig06_AEA.ed.numeric141 unique values
0 missing
ATS1mnumeric130 unique values
0 missing
ATS7mnumeric163 unique values
0 missing
MWnumeric136 unique values
0 missing
ATS8mnumeric162 unique values
0 missing
GATS8enumeric151 unique values
0 missing
LPRSnumeric150 unique values
0 missing
SMTIVnumeric160 unique values
0 missing
X2numeric141 unique values
0 missing
ATSC7mnumeric166 unique values
0 missing
S1Knumeric135 unique values
0 missing
Eig05_AEA.ed.numeric132 unique values
0 missing
ATSC5mnumeric169 unique values
0 missing
GGI4numeric124 unique values
0 missing
ATS3pnumeric141 unique values
0 missing
SpMax2_Bh.m.numeric124 unique values
0 missing
Eig06_AEA.dm.numeric155 unique values
0 missing
Eta_Bnumeric103 unique values
0 missing
X2solnumeric151 unique values
0 missing
SpAD_EA.ed.numeric150 unique values
0 missing
SRW06numeric120 unique values
0 missing
ATS2vnumeric134 unique values
0 missing
VvdwZAZnumeric138 unique values
0 missing
SAtotnumeric142 unique values
0 missing
Eig15_EA.ri.numeric136 unique values
0 missing
AMRnumeric152 unique values
0 missing
Eta_alphanumeric111 unique values
0 missing
GMTIVnumeric160 unique values
0 missing
X0solnumeric125 unique values
0 missing
X1solnumeric142 unique values
0 missing
X3solnumeric159 unique values
0 missing
XMODnumeric153 unique values
0 missing
Eta_C_Anumeric153 unique values
0 missing
Eig04_EA.bo.numeric137 unique values
0 missing
SM14_AEA.ri.numeric137 unique values
0 missing
SMTInumeric150 unique values
0 missing
IDETnumeric150 unique values
0 missing
IDMTnumeric150 unique values
0 missing
Xunumeric150 unique values
0 missing
X0vnumeric140 unique values
0 missing
CENTnumeric145 unique values
0 missing
RDSQnumeric150 unique values
0 missing
SpAD_AEA.ri.numeric167 unique values
0 missing
UNIPnumeric96 unique values
0 missing
Eig04_AEA.bo.numeric132 unique values
0 missing
ATSC8mnumeric164 unique values
0 missing
CIDnumeric114 unique values
0 missing

62 properties

173
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
4.11
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.81
Third quartile of skewness among attributes of the numeric type.
27584.73
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.2
First quartile of kurtosis among attributes of the numeric type.
30.83
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.15
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.48
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
963.58
Mean of means among attributes of the numeric type.
-0.66
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.66
First quartile of standard deviation of attributes of the numeric type.
0.28
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.62
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.38
Number of attributes divided by the number of instances.
0.66
Mean skewness among attributes of the numeric type.
8.62
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1103.06
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.07
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
3.21
Second quartile (Median) of standard deviation of attributes of the numeric type.
23.43
Maximum kurtosis among attributes of the numeric type.
-0.66
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
23151.91
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.2
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
81.47
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.65
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task