Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4226

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4226

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4226 (TID: 30015), and it has 116 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric42 unique values
0 missing
molecule_id (row identifier)nominal116 unique values
0 missing
GATS7snumeric109 unique values
0 missing
BACnumeric39 unique values
0 missing
Eta_sh_pnumeric76 unique values
0 missing
X0Anumeric43 unique values
0 missing
LOCnumeric90 unique values
0 missing
GNarnumeric73 unique values
0 missing
SPInumeric98 unique values
0 missing
IVDEnumeric75 unique values
0 missing
HNarnumeric69 unique values
0 missing
SpMin1_Bh.i.numeric71 unique values
0 missing
SpMin1_Bh.p.numeric63 unique values
0 missing
GGI9numeric86 unique values
0 missing
SpMax1_Bh.s.numeric50 unique values
0 missing
AACnumeric93 unique values
0 missing
AECCnumeric99 unique values
0 missing
ALOGPnumeric113 unique values
0 missing
ALOGP2numeric115 unique values
0 missing
AMRnumeric115 unique values
0 missing
AMWnumeric100 unique values
0 missing
ARRnumeric71 unique values
0 missing
ATS1enumeric99 unique values
0 missing
ATS1inumeric100 unique values
0 missing
ATS1mnumeric98 unique values
0 missing
ATS1pnumeric97 unique values
0 missing
ATS1snumeric102 unique values
0 missing
ATS1vnumeric97 unique values
0 missing
ATS2enumeric101 unique values
0 missing
ATS2inumeric107 unique values
0 missing
ATS2mnumeric107 unique values
0 missing
ATS2pnumeric107 unique values
0 missing
ATS2snumeric105 unique values
0 missing
ATS2vnumeric105 unique values
0 missing
ATS3enumeric110 unique values
0 missing
ATS3inumeric110 unique values
0 missing
ATS3mnumeric107 unique values
0 missing
ATS3pnumeric109 unique values
0 missing
ATS3snumeric108 unique values
0 missing
ATS3vnumeric109 unique values
0 missing
ATS4enumeric105 unique values
0 missing
ATS4inumeric111 unique values
0 missing
ATS4mnumeric103 unique values
0 missing
ATS4pnumeric107 unique values
0 missing
ATS4snumeric112 unique values
0 missing
ATS4vnumeric110 unique values
0 missing
ATS5enumeric106 unique values
0 missing
ATS5inumeric111 unique values
0 missing
ATS5mnumeric108 unique values
0 missing
ATS5pnumeric110 unique values
0 missing
ATS5snumeric113 unique values
0 missing
ATS5vnumeric109 unique values
0 missing
ATS6enumeric105 unique values
0 missing
ATS6inumeric110 unique values
0 missing
ATS6mnumeric109 unique values
0 missing
ATS6pnumeric111 unique values
0 missing
ATS6snumeric109 unique values
0 missing
ATS6vnumeric104 unique values
0 missing
ATS7enumeric110 unique values
0 missing
ATS7inumeric109 unique values
0 missing
ATS7mnumeric109 unique values
0 missing
ATS7pnumeric112 unique values
0 missing
ATS7snumeric108 unique values
0 missing
ATS7vnumeric109 unique values
0 missing
ATS8enumeric107 unique values
0 missing
ATS8inumeric109 unique values
0 missing
ATS8mnumeric111 unique values
0 missing
ATS8pnumeric114 unique values
0 missing

62 properties

116
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.59
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.02
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.47
Mean skewness among attributes of the numeric type.
4.09
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.14
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.49
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.36
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
7.9
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
116.08
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.61
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
5.03
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.1
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.7
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.78
Third quartile of skewness among attributes of the numeric type.
21.48
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.54
First quartile of kurtosis among attributes of the numeric type.
0.36
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.85
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.33
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.32
Mean of means among attributes of the numeric type.
0.2
First quartile of skewness among attributes of the numeric type.
0.61
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task