Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1871

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1871

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1871 (TID: 56), and it has 1631 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric909 unique values
0 missing
molecule_id (row identifier)nominal1631 unique values
0 missing
CIC2numeric771 unique values
0 missing
SpMAD_AEA.bo.numeric223 unique values
0 missing
BIC2numeric256 unique values
0 missing
NaasNnumeric3 unique values
0 missing
SpMax3_Bh.p.numeric604 unique values
0 missing
SIC2numeric279 unique values
0 missing
SpMax2_Bh.p.numeric421 unique values
0 missing
SpMax3_Bh.v.numeric603 unique values
0 missing
C.034numeric5 unique values
0 missing
N.073numeric3 unique values
0 missing
SpMax3_Bh.m.numeric545 unique values
0 missing
SpMin3_Bh.i.numeric537 unique values
0 missing
SpMax3_Bh.e.numeric525 unique values
0 missing
NaasCnumeric13 unique values
0 missing
SpMAD_EA.ed.numeric771 unique values
0 missing
MATS2inumeric517 unique values
0 missing
SpMin3_Bh.p.numeric463 unique values
0 missing
SaaCHnumeric1279 unique values
0 missing
JGI4numeric51 unique values
0 missing
nABnumeric16 unique values
0 missing
PW2numeric90 unique values
0 missing
Eta_B_Anumeric43 unique values
0 missing
ATSC4snumeric1490 unique values
0 missing
P_VSA_s_4numeric555 unique values
0 missing
JGI6numeric40 unique values
0 missing
Eta_betaS_Anumeric135 unique values
0 missing
P_VSA_p_3numeric1231 unique values
0 missing
P_VSA_v_3numeric1231 unique values
0 missing
SpMaxA_EA.dm.numeric147 unique values
0 missing
JGTnumeric368 unique values
0 missing
P_VSA_e_2numeric1227 unique values
0 missing
BIC3numeric167 unique values
0 missing
nBnznumeric5 unique values
0 missing
SpMin2_Bh.m.numeric292 unique values
0 missing
SpMAD_AEA.ri.numeric193 unique values
0 missing
SaasCnumeric1242 unique values
0 missing
Eta_betaP_Anumeric359 unique values
0 missing
NaaCHnumeric18 unique values
0 missing
SpMAD_EAnumeric181 unique values
0 missing
ATSC4enumeric936 unique values
0 missing
GATS2inumeric563 unique values
0 missing
CATS2D_09_LLnumeric30 unique values
0 missing
P_VSA_LogP_3numeric145 unique values
0 missing
Eta_betanumeric170 unique values
0 missing
SaaaCnumeric262 unique values
0 missing
BIC1numeric329 unique values
0 missing
Eig01_EAnumeric434 unique values
0 missing
SM09_AEA.bo.numeric434 unique values
0 missing
SpDiam_EAnumeric434 unique values
0 missing
SpMax_EAnumeric434 unique values
0 missing
SIC1numeric351 unique values
0 missing
ATSC5snumeric1491 unique values
0 missing
CIC1numeric897 unique values
0 missing
SpDiam_EA.ed.numeric701 unique values
0 missing
ATSC8snumeric1480 unique values
0 missing
RFDnumeric47 unique values
0 missing
Eig01_AEA.ri.numeric497 unique values
0 missing
SpMax_AEA.ri.numeric497 unique values
0 missing
RCInumeric55 unique values
0 missing
GATS3snumeric667 unique values
0 missing
Eig01_EA.ed.numeric611 unique values
0 missing
SM10_AEA.dm.numeric611 unique values
0 missing
SpMax_EA.ed.numeric611 unique values
0 missing
C.024numeric18 unique values
0 missing
Eig03_EA.bo.numeric692 unique values
0 missing
SM13_AEA.ri.numeric692 unique values
0 missing
IC1numeric787 unique values
0 missing
SpMax4_Bh.e.numeric553 unique values
0 missing
GATS6snumeric821 unique values
0 missing
GATS2mnumeric522 unique values
0 missing

62 properties

1631
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
13.66
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.66
Third quartile of skewness among attributes of the numeric type.
109.27
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.16
First quartile of kurtosis among attributes of the numeric type.
1.78
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.73
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.86
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
15.37
Mean of means among attributes of the numeric type.
-0.2
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.13
First quartile of standard deviation of attributes of the numeric type.
0.06
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.23
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.04
Number of attributes divided by the number of instances.
0.51
Mean skewness among attributes of the numeric type.
3.34
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
7.35
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.19
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.36
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
281.18
Maximum kurtosis among attributes of the numeric type.
0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
140.66
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.36
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
5.05
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.02
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task