Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075140

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075140

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075140 (TID: 103071), and it has 150 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric118 unique values
0 missing
molecule_id (row identifier)nominal150 unique values
0 missing
Vindexnumeric53 unique values
0 missing
ATSC6enumeric129 unique values
0 missing
Xindexnumeric73 unique values
0 missing
DECCnumeric86 unique values
0 missing
H.051numeric6 unique values
0 missing
MATS6inumeric103 unique values
0 missing
MATS7vnumeric105 unique values
0 missing
SpMin7_Bh.v.numeric76 unique values
0 missing
Yindexnumeric83 unique values
0 missing
JGI5numeric22 unique values
0 missing
SpDiam_AEA.ed.numeric55 unique values
0 missing
AECCnumeric88 unique values
0 missing
HVcpxnumeric87 unique values
0 missing
IDEnumeric89 unique values
0 missing
SpMin7_Bh.p.numeric80 unique values
0 missing
ATS5snumeric133 unique values
0 missing
ATSC2enumeric113 unique values
0 missing
SpDiam_AEA.bo.numeric60 unique values
0 missing
ATS5mnumeric126 unique values
0 missing
ATSC7enumeric126 unique values
0 missing
SpMaxA_AEA.dm.numeric45 unique values
0 missing
MATS3snumeric110 unique values
0 missing
NaaNHnumeric3 unique values
0 missing
SaaNHnumeric67 unique values
0 missing
SpMin6_Bh.e.numeric84 unique values
0 missing
SpMax6_Bh.i.numeric78 unique values
0 missing
SpMax1_Bh.p.numeric70 unique values
0 missing
P_VSA_p_2numeric55 unique values
0 missing
P_VSA_v_2numeric67 unique values
0 missing
ATS2snumeric126 unique values
0 missing
ATS4mnumeric136 unique values
0 missing
ATS6snumeric134 unique values
0 missing
SpDiam_EA.ed.numeric49 unique values
0 missing
SdOnumeric108 unique values
0 missing
P_VSA_MR_2numeric38 unique values
0 missing
ATSC6snumeric142 unique values
0 missing
RDCHInumeric89 unique values
0 missing
MSDnumeric91 unique values
0 missing
JGI8numeric14 unique values
0 missing
ICRnumeric77 unique values
0 missing
SpMaxA_EA.ed.numeric49 unique values
0 missing
ATSC7mnumeric142 unique values
0 missing
O.numeric40 unique values
0 missing
MATS8inumeric110 unique values
0 missing
SpMin6_Bh.i.numeric74 unique values
0 missing
P_VSA_e_5numeric17 unique values
0 missing
GATS7snumeric129 unique values
0 missing
MATS1mnumeric83 unique values
0 missing
X1Pernumeric135 unique values
0 missing
P_VSA_m_3numeric30 unique values
0 missing
GATS7mnumeric127 unique values
0 missing
MATS8mnumeric112 unique values
0 missing
MATS1snumeric95 unique values
0 missing
SpMax3_Bh.s.numeric54 unique values
0 missing
MATS3enumeric108 unique values
0 missing
MATS7mnumeric112 unique values
0 missing
GATS6inumeric123 unique values
0 missing
X1MulPernumeric136 unique values
0 missing
SpMin2_Bh.m.numeric63 unique values
0 missing
SpMax1_Bh.s.numeric37 unique values
0 missing
NdOnumeric5 unique values
0 missing
O.058numeric5 unique values
0 missing
MAXDPnumeric135 unique values
0 missing

62 properties

150
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
1.98
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.63
Third quartile of skewness among attributes of the numeric type.
91.68
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.93
First quartile of kurtosis among attributes of the numeric type.
1.1
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.53
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.01
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.1
Mean of means among attributes of the numeric type.
0.01
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.08
First quartile of standard deviation of attributes of the numeric type.
0.42
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.33
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.43
Number of attributes divided by the number of instances.
0.35
Mean skewness among attributes of the numeric type.
2.04
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
5.65
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.33
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.8
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.34
Second quartile (Median) of standard deviation of attributes of the numeric type.
5.09
Maximum kurtosis among attributes of the numeric type.
-0.16
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
124.73
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.62
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
6.65
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.34
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task