Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4439

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4439

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4439 (TID: 13004), and it has 692 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric382 unique values
0 missing
molecule_id (row identifier)nominal692 unique values
0 missing
SaasCnumeric636 unique values
0 missing
Eig01_EA.bo.numeric193 unique values
0 missing
SM11_AEA.ri.numeric193 unique values
0 missing
SpDiam_EA.bo.numeric193 unique values
0 missing
SpMax_EA.bo.numeric193 unique values
0 missing
JGI5numeric22 unique values
0 missing
Eig02_EA.bo.numeric276 unique values
0 missing
SM12_AEA.ri.numeric276 unique values
0 missing
C.028numeric8 unique values
0 missing
Eig01_EA.ed.numeric234 unique values
0 missing
SM10_AEA.dm.numeric234 unique values
0 missing
SpMax_EA.ed.numeric234 unique values
0 missing
NdSnumeric2 unique values
0 missing
S.108numeric2 unique values
0 missing
ATSC8snumeric677 unique values
0 missing
ATSC5snumeric679 unique values
0 missing
CATS2D_09_APnumeric5 unique values
0 missing
Eig01_AEA.ri.numeric220 unique values
0 missing
SpMax_AEA.ri.numeric220 unique values
0 missing
MATS6inumeric318 unique values
0 missing
nBnznumeric5 unique values
0 missing
SAaccnumeric272 unique values
0 missing
SpDiam_EA.ri.numeric217 unique values
0 missing
ATSC5enumeric429 unique values
0 missing
CATS2D_01_AAnumeric4 unique values
0 missing
nHAccnumeric12 unique values
0 missing
MAXDPnumeric603 unique values
0 missing
nCb.numeric11 unique values
0 missing
SpDiam_EA.ed.numeric282 unique values
0 missing
CATS2D_04_APnumeric4 unique values
0 missing
SpMax1_Bh.m.numeric204 unique values
0 missing
nArNR2numeric2 unique values
0 missing
nCbHnumeric15 unique values
0 missing
TPSA.NO.numeric266 unique values
0 missing
Minumeric53 unique values
0 missing
Eig01_AEA.bo.numeric180 unique values
0 missing
SpMax_AEA.bo.numeric180 unique values
0 missing
C.numeric130 unique values
0 missing
Eig01_AEA.ed.numeric183 unique values
0 missing
SpMax_AEA.ed.numeric183 unique values
0 missing
C.032numeric2 unique values
0 missing
GGI5numeric267 unique values
0 missing
SpMax8_Bh.s.numeric382 unique values
0 missing
nPyridinesnumeric4 unique values
0 missing
N.071numeric2 unique values
0 missing
SAdonnumeric47 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
SsNH2numeric127 unique values
0 missing
nPyrimidinesnumeric3 unique values
0 missing
CATS2D_08_DAnumeric6 unique values
0 missing
ATSC4enumeric405 unique values
0 missing
ATSC4snumeric677 unique values
0 missing
SdOnumeric316 unique values
0 missing
Eig02_AEA.ed.numeric252 unique values
0 missing
TIEnumeric676 unique values
0 missing
CATS2D_08_DDnumeric3 unique values
0 missing
ATSC8enumeric400 unique values
0 missing
C.033numeric3 unique values
0 missing
ATS4snumeric483 unique values
0 missing
SpMax7_Bh.s.numeric397 unique values
0 missing
P_VSA_LogP_6numeric92 unique values
0 missing
Eig01_EA.ri.numeric214 unique values
0 missing
SpMax_EA.ri.numeric214 unique values
0 missing
Eig03_EA.ed.numeric373 unique values
0 missing
SM12_AEA.dm.numeric373 unique values
0 missing
SpMax3_Bh.s.numeric284 unique values
0 missing
SpDiam_AEA.bo.numeric318 unique values
0 missing

62 properties

692
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
9.76
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.9
Third quartile of skewness among attributes of the numeric type.
33.39
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.62
First quartile of kurtosis among attributes of the numeric type.
1.31
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.48
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.61
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.92
Mean of means among attributes of the numeric type.
0.51
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
0.14
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.99
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Number of attributes divided by the number of instances.
1.46
Mean skewness among attributes of the numeric type.
4.2
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
3.49
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.22
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.51
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.37
Second quartile (Median) of standard deviation of attributes of the numeric type.
126.35
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
101.96
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.22
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
7.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.1
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task