Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2789

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2789

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2789 (TID: 13053), and it has 312 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric265 unique values
0 missing
molecule_id (row identifier)nominal312 unique values
0 missing
Eig03_AEA.bo.numeric164 unique values
0 missing
Eig03_EA.bo.numeric176 unique values
0 missing
SM13_AEA.ri.numeric176 unique values
0 missing
SM04_AEA.bo.numeric155 unique values
0 missing
piPC02numeric92 unique values
0 missing
SM02_EA.bo.numeric92 unique values
0 missing
SM05_AEA.bo.numeric156 unique values
0 missing
piPC03numeric132 unique values
0 missing
Uinumeric24 unique values
0 missing
SM07_AEA.bo.numeric185 unique values
0 missing
Eig07_AEA.ed.numeric181 unique values
0 missing
GGI2numeric22 unique values
0 missing
SM08_AEA.bo.numeric182 unique values
0 missing
GGI8numeric128 unique values
0 missing
SM06_AEA.bo.numeric166 unique values
0 missing
SM03_AEA.bo.numeric122 unique values
0 missing
Eig07_EA.ri.numeric210 unique values
0 missing
GGI9numeric128 unique values
0 missing
Eig08_AEA.ed.numeric168 unique values
0 missing
Eig07_AEA.ri.numeric214 unique values
0 missing
Eig07_EA.bo.numeric166 unique values
0 missing
Eig06_AEA.bo.numeric180 unique values
0 missing
SM03_EA.bo.numeric62 unique values
0 missing
Eta_Bnumeric90 unique values
0 missing
SM04_EA.bo.numeric153 unique values
0 missing
Eig07_AEA.bo.numeric165 unique values
0 missing
Eig07_EA.ed.numeric191 unique values
0 missing
SM02_AEA.ri.numeric191 unique values
0 missing
SM02_AEA.bo.numeric109 unique values
0 missing
ATS8mnumeric270 unique values
0 missing
Eig06_EA.bo.numeric184 unique values
0 missing
Eta_FLnumeric242 unique values
0 missing
SPInumeric201 unique values
0 missing
SpMax3_Bh.v.numeric169 unique values
0 missing
SpMax3_Bh.p.numeric151 unique values
0 missing
Eig04_EA.bo.numeric190 unique values
0 missing
SM14_AEA.ri.numeric190 unique values
0 missing
Eig05_AEA.ed.numeric185 unique values
0 missing
ZM2Kupnumeric248 unique values
0 missing
ZM2MulPernumeric285 unique values
0 missing
nBMnumeric24 unique values
0 missing
Ucnumeric24 unique values
0 missing
SMTIVnumeric288 unique values
0 missing
nCsp2numeric24 unique values
0 missing
SpMax2_Bh.v.numeric111 unique values
0 missing
Eig06_EA.ri.numeric255 unique values
0 missing
MATS3mnumeric145 unique values
0 missing
Eig03_AEA.ri.numeric197 unique values
0 missing
ZM2Vnumeric152 unique values
0 missing
Eig03_EA.ri.numeric216 unique values
0 missing
SM05_EA.bo.numeric153 unique values
0 missing
Eig06_AEA.ri.numeric231 unique values
0 missing
Eig06_EAnumeric168 unique values
0 missing
SM14_AEA.bo.numeric168 unique values
0 missing
Eig07_AEA.dm.numeric187 unique values
0 missing
piPC04numeric169 unique values
0 missing
CSInumeric161 unique values
0 missing
Eig02_EAnumeric159 unique values
0 missing
SM10_AEA.bo.numeric159 unique values
0 missing
GGI7numeric152 unique values
0 missing
SpMax6_Bh.s.numeric234 unique values
0 missing
Eta_betaPnumeric41 unique values
0 missing
ECCnumeric138 unique values
0 missing

62 properties

312
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.21
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.05
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.15
Mean skewness among attributes of the numeric type.
3.85
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
132.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.2
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.15
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
24.21
Maximum kurtosis among attributes of the numeric type.
-0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
12331.44
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.49
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
7.31
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.92
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.92
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.51
Third quartile of skewness among attributes of the numeric type.
7897.39
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.08
First quartile of kurtosis among attributes of the numeric type.
0.51
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.87
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
226.93
Mean of means among attributes of the numeric type.
0.83
First quartile of skewness among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task