Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5073

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5073

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5073 (TID: 30028), and it has 399 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric55 unique values
0 missing
molecule_id (row identifier)nominal399 unique values
0 missing
MWnumeric363 unique values
0 missing
Eta_alphanumeric321 unique values
0 missing
IDETnumeric368 unique values
0 missing
X0solnumeric288 unique values
0 missing
MDDDnumeric361 unique values
0 missing
ATS1mnumeric321 unique values
0 missing
X0vnumeric373 unique values
0 missing
IDMTnumeric368 unique values
0 missing
LPRSnumeric368 unique values
0 missing
Xunumeric366 unique values
0 missing
ATS2mnumeric333 unique values
0 missing
X1vnumeric373 unique values
0 missing
XMODnumeric379 unique values
0 missing
X1solnumeric335 unique values
0 missing
ECCnumeric275 unique values
0 missing
X2solnumeric357 unique values
0 missing
AMRnumeric385 unique values
0 missing
S1Knumeric345 unique values
0 missing
X0numeric238 unique values
0 missing
ATS7mnumeric343 unique values
0 missing
ON0numeric133 unique values
0 missing
UNIPnumeric175 unique values
0 missing
VvdwMGnumeric352 unique values
0 missing
Vxnumeric352 unique values
0 missing
SMTInumeric362 unique values
0 missing
Psi_i_0numeric377 unique values
0 missing
Uindexnumeric366 unique values
0 missing
ZM2Madnumeric385 unique values
0 missing
SpMax3_Bh.v.numeric288 unique values
0 missing
SpMax3_Bh.p.numeric292 unique values
0 missing
ON1numeric196 unique values
0 missing
CENTnumeric331 unique values
0 missing
CSInumeric316 unique values
0 missing
SpMax3_Bh.m.numeric287 unique values
0 missing
Eta_Cnumeric387 unique values
0 missing
SMTIVnumeric390 unique values
0 missing
SAtotnumeric382 unique values
0 missing
Spnumeric358 unique values
0 missing
Psi_e_0numeric377 unique values
0 missing
SpMax4_Bh.m.numeric314 unique values
0 missing
VvdwZAZnumeric368 unique values
0 missing
Psi_i_1numeric375 unique values
0 missing
ATS8mnumeric355 unique values
0 missing
Eig05_EA.ed.numeric352 unique values
0 missing
SM14_AEA.dm.numeric352 unique values
0 missing
Chi1_EA.ri.numeric387 unique values
0 missing
SpMax3_Bh.e.numeric285 unique values
0 missing
Dznumeric199 unique values
0 missing
Svnumeric365 unique values
0 missing
SpAD_AEA.ed.numeric365 unique values
0 missing
X3solnumeric357 unique values
0 missing
ATS5mnumeric345 unique values
0 missing
GMTInumeric367 unique values
0 missing
GMTIVnumeric389 unique values
0 missing
ATS6mnumeric345 unique values
0 missing
SpMax7_Bh.m.numeric310 unique values
0 missing
BIDnumeric131 unique values
0 missing
HDcpxnumeric215 unique values
0 missing
IDDMnumeric240 unique values
0 missing
IDMnumeric339 unique values
0 missing
IVDMnumeric210 unique values
0 missing
nSKnumeric37 unique values
0 missing
X1numeric322 unique values
0 missing
IACnumeric358 unique values
0 missing
TIC0numeric358 unique values
0 missing
Eig10_EA.ri.numeric319 unique values
0 missing
Eig05_EAnumeric306 unique values
0 missing
SM13_AEA.bo.numeric306 unique values
0 missing

62 properties

399
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.18
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.37
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.12
Mean skewness among attributes of the numeric type.
15.02
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1075.96
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.19
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.73
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
4.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
43.77
Maximum kurtosis among attributes of the numeric type.
0.65
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
29417.35
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.99
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
102.98
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.88
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.36
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.31
Third quartile of skewness among attributes of the numeric type.
23747.15
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.62
First quartile of kurtosis among attributes of the numeric type.
41.99
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.24
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.32
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1332.03
Mean of means among attributes of the numeric type.
-0.41
First quartile of skewness among attributes of the numeric type.
0.34
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.8
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task