Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2487

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2487

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2487 (TID: 10656), and it has 263 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric212 unique values
0 missing
molecule_id (row identifier)nominal263 unique values
0 missing
nRCOOHnumeric2 unique values
0 missing
SM12_EA.dm.numeric50 unique values
0 missing
SM14_EA.dm.numeric48 unique values
0 missing
JGI6numeric27 unique values
0 missing
SM10_EA.dm.numeric54 unique values
0 missing
Eig01_EA.dm.numeric36 unique values
0 missing
SpMax_EA.dm.numeric36 unique values
0 missing
SpDiam_EA.dm.numeric38 unique values
0 missing
SM04_EA.dm.numeric78 unique values
0 missing
GATS5inumeric173 unique values
0 missing
C.025numeric8 unique values
0 missing
GATS6enumeric228 unique values
0 missing
SpMaxA_EA.dm.numeric79 unique values
0 missing
CATS2D_02_DAnumeric6 unique values
0 missing
CATS2D_02_LLnumeric28 unique values
0 missing
CATS2D_02_NLnumeric5 unique values
0 missing
C.040numeric5 unique values
0 missing
SpMin1_Bh.v.numeric103 unique values
0 missing
CATS2D_01_LLnumeric22 unique values
0 missing
BLTA96numeric154 unique values
0 missing
BLTF96numeric145 unique values
0 missing
MLOGPnumeric187 unique values
0 missing
MLOGP2numeric191 unique values
0 missing
SM05_EA.dm.numeric28 unique values
0 missing
SM07_EA.dm.numeric30 unique values
0 missing
BLTD48numeric151 unique values
0 missing
Eig02_EA.ed.numeric120 unique values
0 missing
SM11_AEA.dm.numeric120 unique values
0 missing
CATS2D_03_NLnumeric3 unique values
0 missing
SM09_EA.dm.numeric27 unique values
0 missing
SM11_EA.dm.numeric27 unique values
0 missing
SM13_EA.dm.numeric27 unique values
0 missing
SM15_EA.dm.numeric26 unique values
0 missing
SpDiam_EA.ed.numeric102 unique values
0 missing
SM08_EA.dm.numeric63 unique values
0 missing
SpMax8_Bh.s.numeric160 unique values
0 missing
CATS2D_05_ALnumeric20 unique values
0 missing
C.004numeric4 unique values
0 missing
nCqnumeric4 unique values
0 missing
ON0numeric96 unique values
0 missing
Eig02_AEA.ed.numeric98 unique values
0 missing
SM14_EA.ri.numeric226 unique values
0 missing
SM15_EA.ri.numeric228 unique values
0 missing
Eig07_AEA.ed.numeric126 unique values
0 missing
CATS2D_04_LLnumeric22 unique values
0 missing
VvdwZAZnumeric210 unique values
0 missing
ATS6snumeric245 unique values
0 missing
IDDMnumeric139 unique values
0 missing
JGI8numeric18 unique values
0 missing
ZM1MulPernumeric227 unique values
0 missing
nCrqnumeric4 unique values
0 missing
GATS6snumeric232 unique values
0 missing
Psi_e_0numeric233 unique values
0 missing
ATS2snumeric222 unique values
0 missing
HDcpxnumeric127 unique values
0 missing
F.084numeric4 unique values
0 missing
SdssCnumeric130 unique values
0 missing
ATS3snumeric232 unique values
0 missing
JGI5numeric28 unique values
0 missing
IDMnumeric171 unique values
0 missing
GGI3numeric85 unique values
0 missing
CATS2D_07_NLnumeric5 unique values
0 missing
SpMax1_Bh.s.numeric80 unique values
0 missing
SpMin2_Bh.e.numeric102 unique values
0 missing
Psi_i_snumeric204 unique values
0 missing
Eta_epsinumeric206 unique values
0 missing

62 properties

263
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
4.86
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.82
Third quartile of skewness among attributes of the numeric type.
135.62
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.03
First quartile of kurtosis among attributes of the numeric type.
3.73
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.48
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.52
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.81
Mean of means among attributes of the numeric type.
0.11
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.43
First quartile of standard deviation of attributes of the numeric type.
-0.21
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.49
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.26
Number of attributes divided by the number of instances.
0.72
Mean skewness among attributes of the numeric type.
3.4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
5.94
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.36
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.64
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
40.11
Maximum kurtosis among attributes of the numeric type.
-4.63
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
420.78
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.66
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
6.96
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.98
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task