Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1811

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1811

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1811 (TID: 261), and it has 542 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric257 unique values
0 missing
molecule_id (row identifier)nominal542 unique values
0 missing
SdsCHnumeric100 unique values
0 missing
GGI7numeric246 unique values
0 missing
C.016numeric6 unique values
0 missing
NdsCHnumeric6 unique values
0 missing
nR.Csnumeric6 unique values
0 missing
nRCOOHnumeric2 unique values
0 missing
GATS2mnumeric308 unique values
0 missing
GGI4numeric288 unique values
0 missing
Eta_betaS_Anumeric87 unique values
0 missing
X5Anumeric32 unique values
0 missing
GATS2vnumeric262 unique values
0 missing
SpMAD_EA.ed.numeric315 unique values
0 missing
X4Anumeric40 unique values
0 missing
PW2numeric62 unique values
0 missing
SpMAD_AEA.ed.numeric145 unique values
0 missing
GGI8numeric256 unique values
0 missing
Eig04_AEA.ed.numeric264 unique values
0 missing
SpMAD_EAnumeric121 unique values
0 missing
X3Anumeric46 unique values
0 missing
Eta_B_Anumeric28 unique values
0 missing
Eig05_EAnumeric276 unique values
0 missing
SM13_AEA.bo.numeric276 unique values
0 missing
CATS2D_05_AAnumeric7 unique values
0 missing
MPC08numeric160 unique values
0 missing
CATS2D_03_DAnumeric5 unique values
0 missing
Eta_Bnumeric193 unique values
0 missing
X1Anumeric46 unique values
0 missing
P_VSA_e_3numeric66 unique values
0 missing
Eig03_EA.ri.numeric286 unique values
0 missing
CATS2D_03_ALnumeric18 unique values
0 missing
Eig05_EA.bo.numeric278 unique values
0 missing
SM15_AEA.ri.numeric278 unique values
0 missing
P_VSA_i_4numeric93 unique values
0 missing
nHMnumeric6 unique values
0 missing
GATS2pnumeric281 unique values
0 missing
Eig03_EA.ed.numeric310 unique values
0 missing
SM12_AEA.dm.numeric310 unique values
0 missing
Ramnumeric16 unique values
0 missing
MPC06numeric130 unique values
0 missing
Eig04_EAnumeric237 unique values
0 missing
SM12_AEA.bo.numeric237 unique values
0 missing
Qindexnumeric31 unique values
0 missing
X2Anumeric49 unique values
0 missing
ATS4mnumeric415 unique values
0 missing
MPC07numeric139 unique values
0 missing
P_VSA_LogP_8numeric19 unique values
0 missing
Eig03_AEA.ri.numeric301 unique values
0 missing
nArXnumeric6 unique values
0 missing
MPC09numeric169 unique values
0 missing
SM12_EAnumeric350 unique values
0 missing
SM13_EAnumeric338 unique values
0 missing
GATS4enumeric370 unique values
0 missing
PW3numeric65 unique values
0 missing
AACnumeric263 unique values
0 missing
IC0numeric263 unique values
0 missing
SM07_AEA.bo.numeric337 unique values
0 missing
SM11_EAnumeric341 unique values
0 missing
ZM2Pernumeric485 unique values
0 missing
Eig05_AEA.ri.numeric326 unique values
0 missing
nXnumeric8 unique values
0 missing
X.numeric65 unique values
0 missing
MWC10numeric323 unique values
0 missing
ATS7mnumeric386 unique values
0 missing
ZM2MulPernumeric487 unique values
0 missing
GATS1mnumeric260 unique values
0 missing

62 properties

542
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.12
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.29
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.41
Mean skewness among attributes of the numeric type.
2.22
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
6.22
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.22
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.36
Second quartile (Median) of standard deviation of attributes of the numeric type.
8.35
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
706.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.04
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
5.67
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.55
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.29
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.88
Third quartile of skewness among attributes of the numeric type.
178.79
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.1
First quartile of kurtosis among attributes of the numeric type.
1.19
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.69
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.76
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
22.51
Mean of means among attributes of the numeric type.
-0.17
First quartile of skewness among attributes of the numeric type.
-0.04
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.17
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task