Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293245

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1293245

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1293245 (TID: 103678), and it has 265 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric42 unique values
0 missing
molecule_id (row identifier)nominal265 unique values
0 missing
nCconjnumeric9 unique values
0 missing
SpMin1_Bh.i.numeric140 unique values
0 missing
X5vnumeric251 unique values
0 missing
Eig01_AEA.bo.numeric190 unique values
0 missing
SpMax_AEA.bo.numeric190 unique values
0 missing
SpDiam_AEA.ed.numeric210 unique values
0 missing
SpMin1_Bh.v.numeric146 unique values
0 missing
SpDiam_AEA.bo.numeric208 unique values
0 missing
X4vnumeric256 unique values
0 missing
Eig01_AEA.ed.numeric175 unique values
0 missing
SpMax_AEA.ed.numeric175 unique values
0 missing
X3vnumeric255 unique values
0 missing
SpMin1_Bh.s.numeric183 unique values
0 missing
Eta_sh_xnumeric82 unique values
0 missing
ATSC2snumeric264 unique values
0 missing
NdssCnumeric8 unique values
0 missing
SpMin1_Bh.e.numeric141 unique values
0 missing
MATS1enumeric167 unique values
0 missing
SM13_EA.bo.numeric241 unique values
0 missing
SM10_EA.bo.numeric244 unique values
0 missing
MATS1mnumeric170 unique values
0 missing
SM11_EA.bo.numeric238 unique values
0 missing
SM12_EA.bo.numeric236 unique values
0 missing
NddssSnumeric3 unique values
0 missing
P_VSA_s_1numeric7 unique values
0 missing
S.110numeric3 unique values
0 missing
SddssSnumeric130 unique values
0 missing
SM15_EA.bo.numeric236 unique values
0 missing
SM09_EA.bo.numeric236 unique values
0 missing
SM07_EA.bo.numeric236 unique values
0 missing
SM09_AEA.ed.numeric243 unique values
0 missing
Eig01_EA.ed.numeric212 unique values
0 missing
SM10_AEA.dm.numeric212 unique values
0 missing
SpMax_EA.ed.numeric212 unique values
0 missing
SM14_EA.bo.numeric240 unique values
0 missing
MAXDNnumeric250 unique values
0 missing
SM05_EA.bo.numeric224 unique values
0 missing
Eig01_EA.bo.numeric182 unique values
0 missing
SM11_AEA.ri.numeric182 unique values
0 missing
SpMax_EA.bo.numeric182 unique values
0 missing
SM15_AEA.ed.numeric239 unique values
0 missing
SpDiam_EA.bo.numeric184 unique values
0 missing
SM08_EAnumeric240 unique values
0 missing
SM10_AEA.ed.numeric244 unique values
0 missing
SM09_EAnumeric242 unique values
0 missing
SM10_EAnumeric244 unique values
0 missing
SM11_AEA.ed.numeric243 unique values
0 missing
SM11_EAnumeric240 unique values
0 missing
SM12_AEA.ed.numeric244 unique values
0 missing
SM12_EAnumeric246 unique values
0 missing
SM13_AEA.ed.numeric240 unique values
0 missing
SM08_EA.bo.numeric234 unique values
0 missing
SM08_AEA.bo.numeric235 unique values
0 missing
Eig01_EAnumeric188 unique values
0 missing
SM09_AEA.bo.numeric188 unique values
0 missing
SpDiam_EAnumeric188 unique values
0 missing
SpMax_EAnumeric188 unique values
0 missing
GATS1enumeric199 unique values
0 missing
SM15_EA.ed.numeric236 unique values
0 missing
SpMax1_Bh.e.numeric160 unique values
0 missing
SM14_EA.ed.numeric240 unique values
0 missing
MATS2snumeric196 unique values
0 missing
GATS5snumeric239 unique values
0 missing
SM06_EA.bo.numeric227 unique values
0 missing
SpMax1_Bh.v.numeric149 unique values
0 missing
SpMin1_Bh.m.numeric128 unique values
0 missing
MATS1inumeric200 unique values
0 missing

62 properties

265
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.26
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.39
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.4
Mean skewness among attributes of the numeric type.
5.71
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
1.31
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.63
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.44
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.61
Second quartile (Median) of standard deviation of attributes of the numeric type.
9.63
Maximum kurtosis among attributes of the numeric type.
-2.19
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
51.14
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.07
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
13.73
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.57
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.01
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.17
Third quartile of skewness among attributes of the numeric type.
37.33
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.08
First quartile of kurtosis among attributes of the numeric type.
1.15
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.27
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.01
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.78
Mean of means among attributes of the numeric type.
-0.85
First quartile of skewness among attributes of the numeric type.
0.75
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task