Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3072

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3072

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3072 (TID: 12832), and it has 478 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric332 unique values
0 missing
molecule_id (row identifier)nominal478 unique values
0 missing
Eig02_AEA.bo.numeric237 unique values
0 missing
IC2numeric335 unique values
0 missing
IC1numeric350 unique values
0 missing
CATS2D_08_AAnumeric7 unique values
0 missing
SM06_AEA.bo.numeric290 unique values
0 missing
SM07_AEA.bo.numeric317 unique values
0 missing
CIC3numeric307 unique values
0 missing
BIC2numeric200 unique values
0 missing
SM05_AEA.bo.numeric300 unique values
0 missing
CIC4numeric282 unique values
0 missing
SIC3numeric177 unique values
0 missing
SM08_AEA.bo.numeric310 unique values
0 missing
SM04_EAnumeric185 unique values
0 missing
Eig03_AEA.ed.numeric236 unique values
0 missing
BIC1numeric240 unique values
0 missing
SpDiam_EA.dm.numeric69 unique values
0 missing
SM04_AEA.bo.numeric282 unique values
0 missing
SM05_EAnumeric153 unique values
0 missing
SM02_EA.ed.numeric243 unique values
0 missing
Ramnumeric19 unique values
0 missing
Eig03_EA.ed.numeric256 unique values
0 missing
SM12_AEA.dm.numeric256 unique values
0 missing
SIC4numeric146 unique values
0 missing
S0Knumeric159 unique values
0 missing
SM03_AEA.ed.numeric254 unique values
0 missing
SM06_AEA.ed.numeric278 unique values
0 missing
SM07_AEA.ed.numeric280 unique values
0 missing
SM06_EAnumeric271 unique values
0 missing
Eig02_EA.dm.numeric56 unique values
0 missing
SIC1numeric269 unique values
0 missing
CATS2D_04_LLnumeric41 unique values
0 missing
SM03_EA.ed.numeric226 unique values
0 missing
SM07_EAnumeric261 unique values
0 missing
SM08_EAnumeric278 unique values
0 missing
BIC3numeric160 unique values
0 missing
SpMAD_EA.dm.numeric258 unique values
0 missing
BBInumeric48 unique values
0 missing
MPC02numeric48 unique values
0 missing
SM02_EAnumeric48 unique values
0 missing
SRW06numeric215 unique values
0 missing
X2numeric295 unique values
0 missing
SIC2numeric210 unique values
0 missing
SM04_EA.ed.numeric289 unique values
0 missing
AACnumeric280 unique values
0 missing
IC0numeric280 unique values
0 missing
SpAD_AEA.ed.numeric305 unique values
0 missing
SRW04numeric101 unique values
0 missing
SpAD_EA.ed.numeric306 unique values
0 missing
SpMax4_Bh.v.numeric257 unique values
0 missing
SM09_EAnumeric280 unique values
0 missing
SM10_EAnumeric288 unique values
0 missing
SM11_AEA.ed.numeric276 unique values
0 missing
SM11_EAnumeric281 unique values
0 missing
SM12_AEA.ed.numeric271 unique values
0 missing
SM12_EAnumeric287 unique values
0 missing
SM13_EAnumeric280 unique values
0 missing
SM14_EAnumeric281 unique values
0 missing
SM15_EAnumeric279 unique values
0 missing
Psi_e_1numeric411 unique values
0 missing
SRW08numeric272 unique values
0 missing
SM03_EAnumeric27 unique values
0 missing
TIC1numeric392 unique values
0 missing
SM02_AEA.ed.numeric150 unique values
0 missing
SpMax5_Bh.i.numeric254 unique values
0 missing
Eig03_EA.dm.numeric63 unique values
0 missing
SM09_EA.ri.numeric335 unique values
0 missing
SM06_EA.dm.numeric192 unique values
0 missing
Eig15_AEA.ed.numeric242 unique values
0 missing

62 properties

478
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.15
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.64
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.1
Mean skewness among attributes of the numeric type.
6.97
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.98
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.96
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.61
Second quartile (Median) of standard deviation of attributes of the numeric type.
132.11
Maximum kurtosis among attributes of the numeric type.
0.38
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
149.79
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.15
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
12.46
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.88
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
8.34
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.1
Third quartile of skewness among attributes of the numeric type.
44.41
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.56
First quartile of kurtosis among attributes of the numeric type.
1.13
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.18
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
9.36
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.93
Mean of means among attributes of the numeric type.
-1.16
First quartile of skewness among attributes of the numeric type.
-0.26
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.3
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task