Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3202

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3202

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3202 (TID: 11968), and it has 338 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric200 unique values
0 missing
molecule_id (row identifier)nominal338 unique values
0 missing
CATS2D_03_PLnumeric5 unique values
0 missing
SsNH2numeric63 unique values
0 missing
CATS2D_00_DDnumeric3 unique values
0 missing
CATS2D_00_DPnumeric3 unique values
0 missing
CATS2D_00_PPnumeric3 unique values
0 missing
NsNH2numeric3 unique values
0 missing
CATS2D_02_PLnumeric4 unique values
0 missing
N.066numeric3 unique values
0 missing
nRNH2numeric3 unique values
0 missing
CATS2D_05_DLnumeric11 unique values
0 missing
CATS2D_02_DLnumeric8 unique values
0 missing
P_VSA_LogP_2numeric112 unique values
0 missing
CATS2D_05_PLnumeric4 unique values
0 missing
CATS2D_04_PLnumeric4 unique values
0 missing
CATS2D_07_APnumeric4 unique values
0 missing
P_VSA_MR_5numeric165 unique values
0 missing
SAdonnumeric23 unique values
0 missing
CATS2D_07_DAnumeric7 unique values
0 missing
CATS2D_09_PLnumeric5 unique values
0 missing
MATS7snumeric204 unique values
0 missing
TPSA.NO.numeric108 unique values
0 missing
Hynumeric164 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
H.050numeric8 unique values
0 missing
nHDonnumeric8 unique values
0 missing
GATS4snumeric264 unique values
0 missing
CATS2D_03_DLnumeric10 unique values
0 missing
MATS7enumeric222 unique values
0 missing
Eig05_EA.bo.numeric200 unique values
0 missing
SM15_AEA.ri.numeric200 unique values
0 missing
BIC1numeric165 unique values
0 missing
JGI1numeric94 unique values
0 missing
MATS1inumeric173 unique values
0 missing
SIC1numeric173 unique values
0 missing
GATS7snumeric271 unique values
0 missing
P_VSA_i_4numeric80 unique values
0 missing
P_VSA_p_2numeric102 unique values
0 missing
JGTnumeric162 unique values
0 missing
JGI9numeric15 unique values
0 missing
GATS7enumeric276 unique values
0 missing
ATSC6snumeric301 unique values
0 missing
P_VSA_s_5numeric14 unique values
0 missing
ICRnumeric167 unique values
0 missing
C.026numeric7 unique values
0 missing
SpMax5_Bh.s.numeric189 unique values
0 missing
Eig06_AEA.bo.numeric195 unique values
0 missing
P_VSA_v_2numeric123 unique values
0 missing
SAaccnumeric123 unique values
0 missing
N.072numeric5 unique values
0 missing
Eta_sh_pnumeric142 unique values
0 missing
CATS2D_07_ALnumeric18 unique values
0 missing
HVcpxnumeric195 unique values
0 missing
DECCnumeric193 unique values
0 missing
TPSA.Tot.numeric129 unique values
0 missing
CATS2D_06_DAnumeric6 unique values
0 missing
AECCnumeric200 unique values
0 missing
IC1numeric246 unique values
0 missing
IVDEnumeric137 unique values
0 missing
GATS4enumeric253 unique values
0 missing
ATSC6vnumeric261 unique values
0 missing
CATS2D_03_AAnumeric7 unique values
0 missing
GGI1numeric22 unique values
0 missing
ATSC6enumeric252 unique values
0 missing
ATSC1snumeric277 unique values
0 missing
P_VSA_e_1numeric37 unique values
0 missing
P_VSA_m_1numeric36 unique values
0 missing
P_VSA_s_2numeric66 unique values
0 missing
P_VSA_v_1numeric36 unique values
0 missing

62 properties

338
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.21
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.66
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.01
Mean skewness among attributes of the numeric type.
1.48
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
10.74
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.04
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.07
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.78
Second quartile (Median) of standard deviation of attributes of the numeric type.
20.53
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
274.83
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.69
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
12.52
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.37
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.62
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.47
Third quartile of skewness among attributes of the numeric type.
75.65
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.18
First quartile of kurtosis among attributes of the numeric type.
5.26
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.38
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.3
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
28.91
Mean of means among attributes of the numeric type.
0.36
First quartile of skewness among attributes of the numeric type.
-0.04
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.38
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task