Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2919

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2919

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2919 (TID: 12518), and it has 125 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric97 unique values
0 missing
molecule_id (row identifier)nominal125 unique values
0 missing
GATS1inumeric94 unique values
0 missing
PCRnumeric91 unique values
0 missing
ARRnumeric43 unique values
0 missing
nABnumeric8 unique values
0 missing
Eta_betaP_Anumeric58 unique values
0 missing
PCDnumeric96 unique values
0 missing
MATS1inumeric88 unique values
0 missing
C.numeric50 unique values
0 missing
ATSC6snumeric121 unique values
0 missing
MATS1pnumeric80 unique values
0 missing
ALOGPnumeric101 unique values
0 missing
nCarnumeric10 unique values
0 missing
CATS2D_06_DAnumeric7 unique values
0 missing
CATS2D_03_LLnumeric15 unique values
0 missing
ALOGP2numeric99 unique values
0 missing
Eig01_AEA.dm.numeric59 unique values
0 missing
SpMax_AEA.dm.numeric59 unique values
0 missing
Eta_beta_Anumeric81 unique values
0 missing
CMC.50numeric2 unique values
0 missing
Depressant.80numeric2 unique values
0 missing
ATSC4enumeric113 unique values
0 missing
MATS1vnumeric69 unique values
0 missing
CATS2D_02_LLnumeric19 unique values
0 missing
CATS2D_04_LLnumeric13 unique values
0 missing
GATS6inumeric105 unique values
0 missing
Infective.50numeric2 unique values
0 missing
SpMin1_Bh.m.numeric81 unique values
0 missing
Inflammat.80numeric2 unique values
0 missing
SaasCnumeric85 unique values
0 missing
CATS2D_08_DAnumeric7 unique values
0 missing
C.025numeric5 unique values
0 missing
SpMin1_Bh.i.numeric87 unique values
0 missing
nCbHnumeric9 unique values
0 missing
CATS2D_05_DPnumeric3 unique values
0 missing
ATSC6enumeric118 unique values
0 missing
DLS_02numeric6 unique values
0 missing
SpMin1_Bh.e.numeric89 unique values
0 missing
Eta_FL_Anumeric77 unique values
0 missing
SpMAD_EA.bo.numeric83 unique values
0 missing
GATS6pnumeric112 unique values
0 missing
NaasCnumeric8 unique values
0 missing
nBnznumeric3 unique values
0 missing
nBMnumeric18 unique values
0 missing
Ucnumeric18 unique values
0 missing
piPC10numeric79 unique values
0 missing
SsssCHnumeric107 unique values
0 missing
ATSC2enumeric81 unique values
0 missing
O.058numeric6 unique values
0 missing
SpMax3_Bh.s.numeric24 unique values
0 missing
C.024numeric10 unique values
0 missing
NaaCHnumeric10 unique values
0 missing
SpMin1_Bh.v.numeric85 unique values
0 missing
CATS2D_05_LLnumeric13 unique values
0 missing
NdssCnumeric8 unique values
0 missing
Eig03_EA.dm.numeric32 unique values
0 missing
SpMAD_EA.dm.numeric77 unique values
0 missing
TPSA.NO.numeric36 unique values
0 missing
Eta_L_Anumeric72 unique values
0 missing
SpDiam_EA.bo.numeric93 unique values
0 missing
SpMax1_Bh.v.numeric101 unique values
0 missing
nCb.numeric6 unique values
0 missing
Neoplastic.50numeric2 unique values
0 missing
nCsp2numeric15 unique values
0 missing
P_VSA_MR_6numeric60 unique values
0 missing
SpAD_EA.dm.numeric42 unique values
0 missing
ATSC4snumeric121 unique values
0 missing

62 properties

125
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.54
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.49
Mean skewness among attributes of the numeric type.
1.85
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.26
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.4
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.5
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.73
Second quartile (Median) of standard deviation of attributes of the numeric type.
17.63
Maximum kurtosis among attributes of the numeric type.
-1.33
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
143.4
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.1
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
3.86
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.57
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.34
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.02
Third quartile of skewness among attributes of the numeric type.
71.66
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.85
First quartile of kurtosis among attributes of the numeric type.
2.84
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.56
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.55
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.52
Mean of means among attributes of the numeric type.
-0.04
First quartile of skewness among attributes of the numeric type.
-0.28
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.17
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task