Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2304404

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2304404

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2304404 (TID: 105567), and it has 318 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric225 unique values
0 missing
molecule_id (row identifier)nominal318 unique values
0 missing
CATS2D_02_DLnumeric6 unique values
0 missing
P_VSA_MR_6numeric108 unique values
0 missing
CATS2D_03_DLnumeric7 unique values
0 missing
SpMin2_Bh.s.numeric122 unique values
0 missing
SaaNHnumeric117 unique values
0 missing
Eta_F_Anumeric225 unique values
0 missing
SsssCHnumeric188 unique values
0 missing
Eig03_EA.ed.numeric152 unique values
0 missing
SM12_AEA.dm.numeric152 unique values
0 missing
GATS7enumeric256 unique values
0 missing
SssCH2numeric277 unique values
0 missing
Eta_FL_Anumeric122 unique values
0 missing
Eig03_AEA.ed.numeric126 unique values
0 missing
SpMin3_Bh.s.numeric159 unique values
0 missing
Eta_beta_Anumeric171 unique values
0 missing
Eta_betaP_Anumeric105 unique values
0 missing
ARRnumeric68 unique values
0 missing
Psi_e_Anumeric200 unique values
0 missing
Psi_i_Anumeric200 unique values
0 missing
NaaCHnumeric13 unique values
0 missing
SaaCHnumeric220 unique values
0 missing
H.052numeric12 unique values
0 missing
Eta_epsi_Anumeric127 unique values
0 missing
Eta_L_Anumeric129 unique values
0 missing
CATS2D_08_PLnumeric4 unique values
0 missing
Menumeric54 unique values
0 missing
AACnumeric159 unique values
0 missing
IC0numeric159 unique values
0 missing
CATS2D_04_DLnumeric8 unique values
0 missing
CATS2D_08_LLnumeric17 unique values
0 missing
C.002numeric11 unique values
0 missing
MAXDNnumeric206 unique values
0 missing
X3Avnumeric43 unique values
0 missing
GATS2enumeric214 unique values
0 missing
CIC1numeric242 unique values
0 missing
ALOGP2numeric261 unique values
0 missing
ALOGPnumeric273 unique values
0 missing
CATS2D_06_ALnumeric21 unique values
0 missing
CATS2D_07_LLnumeric11 unique values
0 missing
CATS2D_09_LLnumeric19 unique values
0 missing
BIC1numeric176 unique values
0 missing
MATS7mnumeric221 unique values
0 missing
X4Avnumeric31 unique values
0 missing
PCRnumeric166 unique values
0 missing
GATS2snumeric224 unique values
0 missing
SpMin7_Bh.s.numeric159 unique values
0 missing
X2Avnumeric68 unique values
0 missing
MATS7enumeric213 unique values
0 missing
MATS8enumeric199 unique values
0 missing
nCsp3numeric19 unique values
0 missing
SIC1numeric175 unique values
0 missing
GATS7mnumeric237 unique values
0 missing
H.049numeric5 unique values
0 missing
O.numeric86 unique values
0 missing
CATS2D_02_APnumeric3 unique values
0 missing
SpMin3_Bh.m.numeric139 unique values
0 missing
P_VSA_LogP_4numeric47 unique values
0 missing
SsNH2numeric88 unique values
0 missing
Eta_C_Anumeric226 unique values
0 missing
CATS2D_07_DPnumeric3 unique values
0 missing
SIC2numeric165 unique values
0 missing
CIC5numeric211 unique values
0 missing
P_VSA_s_6numeric68 unique values
0 missing
AMWnumeric198 unique values
0 missing
CATS2D_04_APnumeric4 unique values
0 missing

62 properties

318
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.21
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.5
Mean skewness among attributes of the numeric type.
1.14
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.11
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.44
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.74
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
35.8
Maximum kurtosis among attributes of the numeric type.
-1.49
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
145.95
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.21
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
2.96
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.54
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.64
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.89
Third quartile of skewness among attributes of the numeric type.
78.83
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.64
First quartile of kurtosis among attributes of the numeric type.
2.21
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.6
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.32
Mean of means among attributes of the numeric type.
0.12
First quartile of skewness among attributes of the numeric type.
-0.34
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task