Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL327

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL327

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL327 (TID: 12744), and it has 59 rows and 124 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

126 features

pXC50 (target)numeric44 unique values
0 missing
molecule_id (row identifier)nominal59 unique values
0 missing
MWC08numeric45 unique values
0 missing
MWC07numeric44 unique values
0 missing
MPC06numeric33 unique values
0 missing
SM06_EA.bo.numeric46 unique values
0 missing
MWC06numeric45 unique values
0 missing
SpMax1_Bh.v.numeric44 unique values
0 missing
SM05_EA.bo.numeric45 unique values
0 missing
SpMax1_Bh.i.numeric43 unique values
0 missing
Eig02_AEA.dm.numeric38 unique values
0 missing
piPC09numeric48 unique values
0 missing
GGI4numeric44 unique values
0 missing
piPC07numeric48 unique values
0 missing
Eig02_AEA.ed.numeric37 unique values
0 missing
Eig01_EA.bo.numeric39 unique values
0 missing
SM11_AEA.ri.numeric39 unique values
0 missing
SM11_EA.bo.numeric47 unique values
0 missing
SM12_EA.bo.numeric46 unique values
0 missing
SM13_EA.bo.numeric47 unique values
0 missing
SM14_EA.bo.numeric47 unique values
0 missing
SM15_EA.bo.numeric46 unique values
0 missing
SpDiam_EA.bo.numeric40 unique values
0 missing
SpMax_EA.bo.numeric39 unique values
0 missing
X5Anumeric20 unique values
0 missing
nCIRnumeric11 unique values
0 missing
SM03_EA.bo.numeric32 unique values
0 missing
MWC09numeric44 unique values
0 missing
TWCnumeric45 unique values
0 missing
SRW10numeric44 unique values
0 missing
piPC05numeric46 unique values
0 missing
Eig04_EA.bo.numeric44 unique values
0 missing
SM14_AEA.ri.numeric44 unique values
0 missing
MWC10numeric43 unique values
0 missing
SM03_EA.ed.numeric40 unique values
0 missing
SM05_AEA.ed.numeric44 unique values
0 missing
SM06_AEA.ed.numeric45 unique values
0 missing
SM07_AEA.ed.numeric45 unique values
0 missing
SM07_EAnumeric39 unique values
0 missing
SM08_AEA.ed.numeric44 unique values
0 missing
MPC04numeric32 unique values
0 missing
piPC06numeric47 unique values
0 missing
SaaaCnumeric26 unique values
0 missing
X4Anumeric23 unique values
0 missing
SM08_EAnumeric43 unique values
0 missing
piPC08numeric46 unique values
0 missing
Eig03_AEA.bo.numeric45 unique values
0 missing
GATS8mnumeric43 unique values
0 missing
Eta_epsi_Anumeric39 unique values
0 missing
AACnumeric45 unique values
0 missing
AECCnumeric41 unique values
0 missing
ALOGPnumeric52 unique values
0 missing
ALOGP2numeric54 unique values
0 missing
AMRnumeric54 unique values
0 missing
AMWnumeric50 unique values
0 missing
ARRnumeric31 unique values
0 missing
ATS1enumeric50 unique values
0 missing
ATS1inumeric48 unique values
0 missing
ATS1mnumeric48 unique values
0 missing
ATS1pnumeric50 unique values
0 missing
ATS1snumeric50 unique values
0 missing
ATS1vnumeric49 unique values
0 missing
ATS2enumeric49 unique values
0 missing
ATS2inumeric51 unique values
0 missing
ATS2mnumeric49 unique values
0 missing
ATS2pnumeric52 unique values
0 missing
ATS2snumeric51 unique values
0 missing
ATS2vnumeric50 unique values
0 missing
ATS3enumeric53 unique values
0 missing
ATS3inumeric53 unique values
0 missing
ATS3mnumeric54 unique values
0 missing
ATS3pnumeric51 unique values
0 missing
ATS3snumeric52 unique values
0 missing
ATS3vnumeric53 unique values
0 missing
ATS4enumeric54 unique values
0 missing
ATS4inumeric53 unique values
0 missing
ATS4mnumeric49 unique values
0 missing
ATS4pnumeric52 unique values
0 missing
ATS4snumeric49 unique values
0 missing
ATS4vnumeric53 unique values
0 missing
ATS5enumeric52 unique values
0 missing
ATS5inumeric51 unique values
0 missing
ATS5mnumeric53 unique values
0 missing
ATS5pnumeric54 unique values
0 missing
ATS5snumeric51 unique values
0 missing
ATS5vnumeric53 unique values
0 missing
ATS6enumeric53 unique values
0 missing
ATS6inumeric54 unique values
0 missing
ATS6mnumeric52 unique values
0 missing
ATS6pnumeric52 unique values
0 missing
ATS6snumeric51 unique values
0 missing
ATS6vnumeric53 unique values
0 missing
ATS7enumeric51 unique values
0 missing
ATS7inumeric52 unique values
0 missing
ATS7mnumeric49 unique values
0 missing
ATS7pnumeric50 unique values
0 missing
ATS7snumeric48 unique values
0 missing
ATS7vnumeric52 unique values
0 missing
ATS8enumeric48 unique values
0 missing
ATS8inumeric47 unique values
0 missing
ATS8mnumeric48 unique values
0 missing
ATS8pnumeric48 unique values
0 missing
ATS8snumeric47 unique values
0 missing
ATS8vnumeric47 unique values
0 missing
ATSC1enumeric34 unique values
0 missing
ATSC1inumeric50 unique values
0 missing
ATSC1mnumeric51 unique values
0 missing
ATSC1pnumeric51 unique values
0 missing
ATSC1snumeric52 unique values
0 missing
ATSC1vnumeric51 unique values
0 missing
ATSC2enumeric48 unique values
0 missing
ATSC2inumeric51 unique values
0 missing
ATSC2mnumeric52 unique values
0 missing
ATSC2pnumeric52 unique values
0 missing
ATSC2snumeric54 unique values
0 missing
ATSC2vnumeric52 unique values
0 missing
ATSC3enumeric54 unique values
0 missing
ATSC3inumeric53 unique values
0 missing
ATSC3mnumeric53 unique values
0 missing
ATSC3pnumeric54 unique values
0 missing
ATSC3snumeric54 unique values
0 missing
ATSC3vnumeric54 unique values
0 missing
ATSC4enumeric50 unique values
0 missing
ATSC4inumeric54 unique values
0 missing
ATSC4mnumeric54 unique values
0 missing
ATSC4pnumeric54 unique values
0 missing

62 properties

59
Number of instances (rows) of the dataset.
126
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
125
Number of numeric attributes.
1
Number of nominal attributes.
99.21
Percentage of numeric attributes.
8.39
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0.79
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.02
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
-0.16
Third quartile of skewness among attributes of the numeric type.
2.26
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
-0.73
First quartile of kurtosis among attributes of the numeric type.
0.92
Third quartile of standard deviation of attributes of the numeric type.
23.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
3.55
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.12
Mean kurtosis among attributes of the numeric type.
-0.96
First quartile of skewness among attributes of the numeric type.
7.22
Mean of means among attributes of the numeric type.
0.32
First quartile of standard deviation of attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
-0.22
Second quartile (Median) of kurtosis among attributes of the numeric type.
2.14
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.57
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.53
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
1.29
Mean standard deviation of attributes of the numeric type.
-0.65
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.63
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
7.55
Maximum kurtosis among attributes of the numeric type.
0.05
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
0.33
Third quartile of kurtosis among attributes of the numeric type.
94.83
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task