Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3571

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3571

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3571 (TID: 10502), and it has 1627 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric993 unique values
0 missing
molecule_id (row identifier)nominal1627 unique values
0 missing
FCFP4_1024b330numeric2 unique values
0 missing
FCFP4_1024b468numeric2 unique values
0 missing
FCFP4_1024b904numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b679numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b336numeric2 unique values
0 missing
FCFP4_1024b639numeric2 unique values
0 missing
FCFP4_1024b656numeric2 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b740numeric2 unique values
0 missing
FCFP4_1024b649numeric2 unique values
0 missing
FCFP4_1024b57numeric2 unique values
0 missing
FCFP4_1024b585numeric2 unique values
0 missing
FCFP4_1024b319numeric2 unique values
0 missing
FCFP4_1024b33numeric2 unique values
0 missing
FCFP4_1024b743numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b51numeric2 unique values
0 missing
FCFP4_1024b5numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b717numeric2 unique values
0 missing
FCFP4_1024b96numeric2 unique values
0 missing
FCFP4_1024b920numeric2 unique values
0 missing
FCFP4_1024b452numeric2 unique values
0 missing
FCFP4_1024b256numeric2 unique values
0 missing
FCFP4_1024b350numeric2 unique values
0 missing
FCFP4_1024b701numeric2 unique values
0 missing
FCFP4_1024b697numeric2 unique values
0 missing
FCFP4_1024b505numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b876numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b69numeric2 unique values
0 missing
FCFP4_1024b264numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b648numeric2 unique values
0 missing
FCFP4_1024b973numeric2 unique values
0 missing
FCFP4_1024b851numeric2 unique values
0 missing
FCFP4_1024b612numeric2 unique values
0 missing
FCFP4_1024b199numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b374numeric2 unique values
0 missing
FCFP4_1024b189numeric2 unique values
0 missing
FCFP4_1024b843numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b125numeric2 unique values
0 missing
FCFP4_1024b626numeric2 unique values
0 missing
FCFP4_1024b148numeric2 unique values
0 missing
FCFP4_1024b940numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b622numeric2 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b369numeric2 unique values
0 missing
FCFP4_1024b986numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b2numeric2 unique values
0 missing
FCFP4_1024b588numeric2 unique values
0 missing
FCFP4_1024b137numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b219numeric2 unique values
0 missing
FCFP4_1024b54numeric2 unique values
0 missing
FCFP4_1024b281numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b215numeric2 unique values
0 missing
FCFP4_1024b229numeric2 unique values
0 missing
FCFP4_1024b262numeric2 unique values
0 missing
FCFP4_1024b243numeric2 unique values
0 missing
FCFP4_1024b859numeric2 unique values
0 missing
FCFP4_1024b720numeric2 unique values
0 missing
FCFP4_1024b942numeric2 unique values
0 missing
FCFP4_1024b17numeric2 unique values
0 missing
FCFP4_1024b232numeric2 unique values
0 missing
FCFP4_1024b625numeric2 unique values
0 missing
FCFP4_1024b771numeric2 unique values
0 missing
FCFP4_1024b572numeric2 unique values
0 missing
FCFP4_1024b589numeric2 unique values
0 missing
FCFP4_1024b402numeric2 unique values
0 missing
FCFP4_1024b152numeric2 unique values
0 missing
FCFP4_1024b520numeric2 unique values
0 missing
FCFP4_1024b78numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b524numeric2 unique values
0 missing
FCFP4_1024b706numeric2 unique values
0 missing
FCFP4_1024b964numeric2 unique values
0 missing
FCFP4_1024b61numeric2 unique values
0 missing
FCFP4_1024b667numeric2 unique values
0 missing
FCFP4_1024b332numeric2 unique values
0 missing
FCFP4_1024b782numeric2 unique values
0 missing
FCFP4_1024b615numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b726numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b444numeric2 unique values
0 missing
FCFP4_1024b460numeric2 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b365numeric2 unique values
0 missing
FCFP4_1024b40numeric2 unique values
0 missing
FCFP4_1024b496numeric2 unique values
0 missing
FCFP4_1024b72numeric2 unique values
0 missing
FCFP4_1024b18numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing

62 properties

1627
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
99.04
Percentage of numeric attributes.
0.29
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.63
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
4.7
Third quartile of skewness among attributes of the numeric type.
8.24
Maximum skewness among attributes of the numeric type.
0.12
Minimum standard deviation of attributes of the numeric type.
0.47
First quartile of kurtosis among attributes of the numeric type.
0.44
Third quartile of standard deviation of attributes of the numeric type.
2.26
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
0.04
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.11
Mean kurtosis among attributes of the numeric type.
0.91
First quartile of skewness among attributes of the numeric type.
0.25
Mean of means among attributes of the numeric type.
0.2
First quartile of standard deviation of attributes of the numeric type.
-0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5.17
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.06
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.1
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2.76
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
0.33
Mean standard deviation of attributes of the numeric type.
2.6
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0
Percentage of binary attributes.
0.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
65.96
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
20.14
Third quartile of kurtosis among attributes of the numeric type.
6.48
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task