Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2722

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2722

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2722 (TID: 11541), and it has 496 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric325 unique values
0 missing
molecule_id (row identifier)nominal496 unique values
0 missing
C.028numeric2 unique values
0 missing
N.075numeric4 unique values
0 missing
NaaNnumeric4 unique values
0 missing
JGI9numeric15 unique values
0 missing
SpMax1_Bh.i.numeric144 unique values
0 missing
SpMax1_Bh.e.numeric160 unique values
0 missing
RCInumeric30 unique values
0 missing
RFDnumeric29 unique values
0 missing
SpMAD_AEA.ed.numeric145 unique values
0 missing
NNRSnumeric7 unique values
0 missing
Eig01_EA.dm.numeric35 unique values
0 missing
SM04_EA.dm.numeric86 unique values
0 missing
SM06_EA.dm.numeric84 unique values
0 missing
SM08_EA.dm.numeric76 unique values
0 missing
SM10_EA.dm.numeric70 unique values
0 missing
SM12_EA.dm.numeric63 unique values
0 missing
SpDiam_EA.dm.numeric37 unique values
0 missing
SpMax_EA.dm.numeric35 unique values
0 missing
SM14_EA.dm.numeric59 unique values
0 missing
MATS2mnumeric207 unique values
0 missing
SM02_EA.dm.numeric83 unique values
0 missing
SpAD_EA.dm.numeric88 unique values
0 missing
Eig01_EA.bo.numeric218 unique values
0 missing
SM11_AEA.ri.numeric218 unique values
0 missing
SpDiam_EA.bo.numeric220 unique values
0 missing
SpMax_EA.bo.numeric218 unique values
0 missing
Eig01_AEA.ri.numeric262 unique values
0 missing
SpMax_AEA.ri.numeric262 unique values
0 missing
MATS1inumeric235 unique values
0 missing
H.049numeric6 unique values
0 missing
Eig01_EAnumeric211 unique values
0 missing
SM09_AEA.bo.numeric211 unique values
0 missing
SpDiam_EAnumeric211 unique values
0 missing
SpMax_EAnumeric211 unique values
0 missing
SPInumeric231 unique values
0 missing
IVDEnumeric121 unique values
0 missing
CATS2D_05_ALnumeric15 unique values
0 missing
MATS7vnumeric277 unique values
0 missing
JGI8numeric17 unique values
0 missing
Eig01_AEA.ed.numeric196 unique values
0 missing
Eig01_EA.ed.numeric223 unique values
0 missing
SM10_AEA.dm.numeric223 unique values
0 missing
SM13_EA.ed.numeric266 unique values
0 missing
SM14_EA.ed.numeric274 unique values
0 missing
SM15_EA.ed.numeric267 unique values
0 missing
SpDiam_EA.ed.numeric253 unique values
0 missing
SpMax_AEA.ed.numeric196 unique values
0 missing
SpMax_EA.ed.numeric223 unique values
0 missing
SpMAD_EA.dm.numeric158 unique values
0 missing
MATS4inumeric263 unique values
0 missing
X4Anumeric39 unique values
0 missing
SM15_EA.bo.numeric318 unique values
0 missing
Eig01_AEA.dm.numeric241 unique values
0 missing
SpDiam_AEA.dm.numeric243 unique values
0 missing
SpMax_AEA.dm.numeric241 unique values
0 missing
SpDiam_AEA.ri.numeric291 unique values
0 missing
MATS7mnumeric259 unique values
0 missing
GATS1enumeric249 unique values
0 missing
SM07_EA.ri.numeric402 unique values
0 missing
Eig01_AEA.bo.numeric214 unique values
0 missing
SpMax_AEA.bo.numeric214 unique values
0 missing
SM12_EA.ed.numeric274 unique values
0 missing
CATS2D_09_AAnumeric6 unique values
0 missing
SM14_EAnumeric273 unique values
0 missing

62 properties

496
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
2.76
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.87
Third quartile of skewness among attributes of the numeric type.
5.06
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.21
First quartile of kurtosis among attributes of the numeric type.
1.55
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.1
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.12
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.65
Mean of means among attributes of the numeric type.
0.26
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.17
First quartile of standard deviation of attributes of the numeric type.
0.25
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.57
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
0.6
Mean skewness among attributes of the numeric type.
3.3
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
0.93
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.5
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.11
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.44
Second quartile (Median) of standard deviation of attributes of the numeric type.
15.47
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
35.56
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.15
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
5.92
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.46
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task