Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3831

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3831

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3831 (TID: 30001), and it has 717 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric59 unique values
0 missing
molecule_id (row identifier)nominal717 unique values
0 missing
D.Dtr09numeric398 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
SpMax2_Bh.i.numeric257 unique values
0 missing
SsNH2numeric250 unique values
0 missing
Hynumeric380 unique values
0 missing
SpMax2_Bh.e.numeric256 unique values
0 missing
D.Dtr05numeric490 unique values
0 missing
Xindexnumeric268 unique values
0 missing
SpMax6_Bh.m.numeric464 unique values
0 missing
H.050numeric10 unique values
0 missing
nHDonnumeric10 unique values
0 missing
SpMax3_Bh.m.numeric367 unique values
0 missing
GMTInumeric642 unique values
0 missing
Eig09_EA.ed.numeric548 unique values
0 missing
SM04_AEA.ri.numeric548 unique values
0 missing
SpMax5_Bh.m.numeric456 unique values
0 missing
SpMax1_Bh.e.numeric227 unique values
0 missing
Yindexnumeric398 unique values
0 missing
Eig12_EA.bo.numeric491 unique values
0 missing
CATS2D_08_DPnumeric6 unique values
0 missing
Eig09_EAnumeric440 unique values
0 missing
SM03_AEA.dm.numeric440 unique values
0 missing
Eig09_EA.ri.numeric486 unique values
0 missing
Vindexnumeric212 unique values
0 missing
Eig07_AEA.ri.numeric521 unique values
0 missing
X1solnumeric570 unique values
0 missing
Eig09_AEA.dm.numeric501 unique values
0 missing
X3solnumeric624 unique values
0 missing
SpMax3_Bh.i.numeric357 unique values
0 missing
Eig09_AEA.ri.numeric495 unique values
0 missing
Eig14_AEA.dm.numeric518 unique values
0 missing
Eig15_AEA.dm.numeric522 unique values
0 missing
SMTInumeric644 unique values
0 missing
ATS2mnumeric493 unique values
0 missing
SpMin4_Bh.v.numeric398 unique values
0 missing
SpMin4_Bh.p.numeric416 unique values
0 missing
CATS2D_06_DLnumeric15 unique values
0 missing
VvdwMGnumeric617 unique values
0 missing
Vxnumeric617 unique values
0 missing
Chi0_EA.dm.numeric619 unique values
0 missing
SpMin3_Bh.p.numeric333 unique values
0 missing
SpMin3_Bh.v.numeric332 unique values
0 missing
SpMax8_Bh.p.numeric392 unique values
0 missing
XMODnumeric685 unique values
0 missing
SpAD_EA.bo.numeric654 unique values
0 missing
Eig13_AEA.dm.numeric502 unique values
0 missing
Chi0_EA.bo.numeric605 unique values
0 missing
UNIPnumeric194 unique values
0 missing
X2solnumeric615 unique values
0 missing
SAdonnumeric92 unique values
0 missing
IC5numeric440 unique values
0 missing
Eta_betanumeric149 unique values
0 missing
Eig15_AEA.bo.numeric467 unique values
0 missing
Psi_i_0numeric667 unique values
0 missing
SpMax1_Bh.p.numeric253 unique values
0 missing
Eig07_AEA.bo.numeric466 unique values
0 missing
ICRnumeric413 unique values
0 missing
MSDnumeric610 unique values
0 missing
Chi1_EA.ed.numeric613 unique values
0 missing
AECCnumeric533 unique values
0 missing
Chi0_AEA.bo.numeric515 unique values
0 missing
Chi0_AEA.dm.numeric515 unique values
0 missing
Chi0_AEA.ed.numeric515 unique values
0 missing
Chi0_AEA.ri.numeric515 unique values
0 missing
Chi0_EAnumeric515 unique values
0 missing
X1vnumeric670 unique values
0 missing
SpMax5_Bh.e.numeric443 unique values
0 missing
Eig11_AEA.ri.numeric487 unique values
0 missing
Eig07_EAnumeric460 unique values
0 missing

62 properties

717
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
7.47
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.78
Third quartile of skewness among attributes of the numeric type.
8270.44
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.57
First quartile of kurtosis among attributes of the numeric type.
4.44
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.64
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
5.38
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
322.05
Mean of means among attributes of the numeric type.
-0.69
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.31
First quartile of standard deviation of attributes of the numeric type.
0.49
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.18
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Number of attributes divided by the number of instances.
0.46
Mean skewness among attributes of the numeric type.
3.5
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
236.34
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.47
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.77
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.79
Second quartile (Median) of standard deviation of attributes of the numeric type.
73.43
Maximum kurtosis among attributes of the numeric type.
-0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
10821.64
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.29
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
17.86
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.82
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task