Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3223

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3223

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3223 (TID: 11923), and it has 365 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric277 unique values
0 missing
molecule_id (row identifier)nominal365 unique values
0 missing
SRW09numeric34 unique values
0 missing
SRW07numeric12 unique values
0 missing
SpMAD_EA.ri.numeric142 unique values
0 missing
SdOnumeric219 unique values
0 missing
GATS8pnumeric250 unique values
0 missing
GATS2snumeric243 unique values
0 missing
MATS4vnumeric157 unique values
0 missing
SaasCnumeric339 unique values
0 missing
GATS1enumeric211 unique values
0 missing
D.Dtr09numeric113 unique values
0 missing
GATS8inumeric237 unique values
0 missing
SpMax2_Bh.s.numeric155 unique values
0 missing
D.Dtr05numeric143 unique values
0 missing
SpMax1_Bh.s.numeric104 unique values
0 missing
SpDiam_AEA.ed.numeric172 unique values
0 missing
SsssCHnumeric146 unique values
0 missing
CATS2D_04_LLnumeric29 unique values
0 missing
nArCONR2numeric2 unique values
0 missing
Hynumeric168 unique values
0 missing
GATS2enumeric252 unique values
0 missing
CATS2D_02_AAnumeric8 unique values
0 missing
nR09numeric4 unique values
0 missing
SsCH3numeric227 unique values
0 missing
GATS8vnumeric237 unique values
0 missing
GATS1snumeric219 unique values
0 missing
X4Anumeric43 unique values
0 missing
Eig03_EAnumeric158 unique values
0 missing
SM11_AEA.bo.numeric158 unique values
0 missing
CATS2D_03_LLnumeric31 unique values
0 missing
GATS3enumeric229 unique values
0 missing
SssNHnumeric123 unique values
0 missing
SpMin8_Bh.p.numeric197 unique values
0 missing
SpMin8_Bh.v.numeric197 unique values
0 missing
SpMin8_Bh.m.numeric202 unique values
0 missing
ATSC4snumeric347 unique values
0 missing
SpMax1_Bh.p.numeric162 unique values
0 missing
SM08_EA.bo.numeric234 unique values
0 missing
SM10_EA.bo.numeric220 unique values
0 missing
SM15_EA.bo.numeric221 unique values
0 missing
ATSC7enumeric255 unique values
0 missing
SM07_EA.bo.numeric212 unique values
0 missing
SM09_EA.bo.numeric216 unique values
0 missing
SM11_EA.bo.numeric223 unique values
0 missing
SM12_EA.bo.numeric225 unique values
0 missing
SM13_EA.bo.numeric219 unique values
0 missing
SM14_EA.bo.numeric213 unique values
0 missing
AACnumeric204 unique values
0 missing
AECCnumeric235 unique values
0 missing
ALOGPnumeric297 unique values
0 missing
ALOGP2numeric306 unique values
0 missing
AMRnumeric308 unique values
0 missing
AMWnumeric250 unique values
0 missing
ARRnumeric92 unique values
0 missing
ATS1enumeric239 unique values
0 missing
ATS1inumeric247 unique values
0 missing
ATS1mnumeric236 unique values
0 missing
ATS1pnumeric256 unique values
0 missing
ATS1snumeric262 unique values
0 missing
ATS1vnumeric249 unique values
0 missing
ATS2enumeric253 unique values
0 missing
ATS2inumeric252 unique values
0 missing
ATS2mnumeric244 unique values
0 missing
ATS2pnumeric258 unique values
0 missing
ATS2snumeric270 unique values
0 missing

62 properties

365
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
6.37
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.03
Third quartile of skewness among attributes of the numeric type.
78.48
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.25
First quartile of kurtosis among attributes of the numeric type.
1.31
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.11
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.21
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9
Mean of means among attributes of the numeric type.
-0.18
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
-0.04
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.87
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.18
Number of attributes divided by the number of instances.
0.51
Mean skewness among attributes of the numeric type.
4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
3.86
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.28
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.35
Second quartile (Median) of standard deviation of attributes of the numeric type.
79.89
Maximum kurtosis among attributes of the numeric type.
-0.47
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
111.83
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.62
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
10.6
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.27
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task