Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3835

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3835

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3835 (TID: 30017), and it has 1058 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric133 unique values
0 missing
molecule_id (row identifier)nominal1058 unique values
0 missing
CATS2D_08_DPnumeric7 unique values
0 missing
Eig07_AEA.bo.numeric606 unique values
0 missing
Eig09_EA.ed.numeric755 unique values
0 missing
SM04_AEA.ri.numeric755 unique values
0 missing
Eig08_EA.ri.numeric649 unique values
0 missing
Chi0_EA.dm.numeric879 unique values
0 missing
Eig08_AEA.bo.numeric600 unique values
0 missing
Eig09_AEA.bo.numeric629 unique values
0 missing
Eig09_EAnumeric594 unique values
0 missing
SM03_AEA.dm.numeric594 unique values
0 missing
Eig08_AEA.ri.numeric663 unique values
0 missing
ATS1mnumeric600 unique values
0 missing
Eig08_EAnumeric582 unique values
0 missing
SM02_AEA.dm.numeric582 unique values
0 missing
XMODnumeric993 unique values
0 missing
Eig07_AEA.ri.numeric674 unique values
0 missing
Eig07_EA.bo.numeric640 unique values
0 missing
Eta_alphanumeric601 unique values
0 missing
Eig09_EA.ri.numeric656 unique values
0 missing
Eig08_EA.ed.numeric759 unique values
0 missing
SM03_AEA.ri.numeric759 unique values
0 missing
ZM2Madnumeric1006 unique values
0 missing
Eig09_AEA.ri.numeric678 unique values
0 missing
Eig07_EAnumeric598 unique values
0 missing
SM15_AEA.bo.numeric598 unique values
0 missing
Eta_Fnumeric1023 unique values
0 missing
ATS2mnumeric626 unique values
0 missing
Eig08_EA.bo.numeric651 unique values
0 missing
X0solnumeric576 unique values
0 missing
SMTIVnumeric1008 unique values
0 missing
ECCnumeric444 unique values
0 missing
Eig09_AEA.ed.numeric647 unique values
0 missing
CATS2D_08_DDnumeric7 unique values
0 missing
Xunumeric913 unique values
0 missing
Eta_betanumeric164 unique values
0 missing
IDETnumeric928 unique values
0 missing
LPRSnumeric932 unique values
0 missing
IDMTnumeric930 unique values
0 missing
ZM1Madnumeric991 unique values
0 missing
CSInumeric627 unique values
0 missing
X2solnumeric872 unique values
0 missing
SMTInumeric912 unique values
0 missing
Eig08_AEA.ed.numeric666 unique values
0 missing
MWnumeric910 unique values
0 missing
Eig08_AEA.dm.numeric664 unique values
0 missing
MSDnumeric859 unique values
0 missing
GMTInumeric910 unique values
0 missing
UNIPnumeric210 unique values
0 missing
SpMax7_Bh.i.numeric533 unique values
0 missing
SM03_AEA.bo.numeric547 unique values
0 missing
X1solnumeric791 unique values
0 missing
AMRnumeric998 unique values
0 missing
X4solnumeric876 unique values
0 missing
X3solnumeric882 unique values
0 missing
Eig09_EA.bo.numeric660 unique values
0 missing
ON1numeric266 unique values
0 missing
ATS1snumeric614 unique values
0 missing
GMTIVnumeric1019 unique values
0 missing
X1numeric716 unique values
0 missing
Eig13_EA.bo.numeric689 unique values
0 missing
SpMax6_Bh.m.numeric582 unique values
0 missing
Polnumeric69 unique values
0 missing
SM02_AEA.bo.numeric395 unique values
0 missing
IDEnumeric676 unique values
0 missing
Chi0_EA.ed.numeric878 unique values
0 missing
Chi0_EA.ri.numeric979 unique values
0 missing
P_VSA_e_2numeric972 unique values
0 missing
IDDMnumeric341 unique values
0 missing
CIDnumeric498 unique values
0 missing
Eig14_AEA.bo.numeric661 unique values
0 missing

62 properties

1058
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
1.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.87
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
60.35
Maximum kurtosis among attributes of the numeric type.
0.19
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
5.31
Third quartile of kurtosis among attributes of the numeric type.
31434.9
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
98.61
Percentage of numeric attributes.
37.16
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-2.07
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
0.55
Third quartile of skewness among attributes of the numeric type.
6.11
Maximum skewness among attributes of the numeric type.
0.24
Minimum standard deviation of attributes of the numeric type.
0.44
First quartile of kurtosis among attributes of the numeric type.
9.64
Third quartile of standard deviation of attributes of the numeric type.
22572.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.31
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of mutual information between the nominal attributes and the target attribute.
4.61
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
-1.41
First quartile of skewness among attributes of the numeric type.
1327.44
Mean of means among attributes of the numeric type.
0.49
First quartile of standard deviation of attributes of the numeric type.
0.52
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.94
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.03
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
970.36
Mean standard deviation of attributes of the numeric type.
0.07
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task