Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2858

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2858

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2858 (TID: 12471), and it has 406 rows and 102 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

104 features

pXC50 (target)numeric321 unique values
0 missing
molecule_id (row identifier)nominal406 unique values
0 missing
FCFP4_1024b426numeric2 unique values
0 missing
FCFP4_1024b1022numeric2 unique values
0 missing
FCFP4_1024b442numeric2 unique values
0 missing
FCFP4_1024b619numeric2 unique values
0 missing
FCFP4_1024b530numeric2 unique values
0 missing
FCFP4_1024b827numeric2 unique values
0 missing
FCFP4_1024b20numeric2 unique values
0 missing
FCFP4_1024b781numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b726numeric2 unique values
0 missing
FCFP4_1024b632numeric2 unique values
0 missing
FCFP4_1024b574numeric2 unique values
0 missing
FCFP4_1024b133numeric2 unique values
0 missing
FCFP4_1024b925numeric2 unique values
0 missing
FCFP4_1024b909numeric2 unique values
0 missing
FCFP4_1024b382numeric2 unique values
0 missing
FCFP4_1024b385numeric2 unique values
0 missing
FCFP4_1024b815numeric2 unique values
0 missing
FCFP4_1024b75numeric2 unique values
0 missing
FCFP4_1024b235numeric2 unique values
0 missing
FCFP4_1024b773numeric2 unique values
0 missing
FCFP4_1024b954numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b91numeric2 unique values
0 missing
FCFP4_1024b983numeric2 unique values
0 missing
FCFP4_1024b680numeric2 unique values
0 missing
FCFP4_1024b468numeric2 unique values
0 missing
FCFP4_1024b498numeric2 unique values
0 missing
FCFP4_1024b831numeric2 unique values
0 missing
FCFP4_1024b904numeric2 unique values
0 missing
FCFP4_1024b464numeric2 unique values
0 missing
FCFP4_1024b816numeric2 unique values
0 missing
FCFP4_1024b97numeric2 unique values
0 missing
FCFP4_1024b738numeric2 unique values
0 missing
FCFP4_1024b697numeric2 unique values
0 missing
FCFP4_1024b440numeric2 unique values
0 missing
FCFP4_1024b68numeric2 unique values
0 missing
FCFP4_1024b71numeric2 unique values
0 missing
FCFP4_1024b600numeric2 unique values
0 missing
FCFP4_1024b731numeric2 unique values
0 missing
FCFP4_1024b298numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b311numeric2 unique values
0 missing
FCFP4_1024b38numeric2 unique values
0 missing
FCFP4_1024b665numeric2 unique values
0 missing
FCFP4_1024b809numeric2 unique values
0 missing
FCFP4_1024b817numeric2 unique values
0 missing
FCFP4_1024b1numeric1 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b100numeric2 unique values
0 missing
FCFP4_1024b1000numeric1 unique values
0 missing
FCFP4_1024b1001numeric2 unique values
0 missing
FCFP4_1024b1002numeric2 unique values
0 missing
FCFP4_1024b1003numeric2 unique values
0 missing
FCFP4_1024b1004numeric2 unique values
0 missing
FCFP4_1024b1005numeric2 unique values
0 missing
FCFP4_1024b1006numeric2 unique values
0 missing
FCFP4_1024b1007numeric2 unique values
0 missing
FCFP4_1024b1008numeric1 unique values
0 missing
FCFP4_1024b1009numeric2 unique values
0 missing
FCFP4_1024b101numeric1 unique values
0 missing
FCFP4_1024b1010numeric2 unique values
0 missing
FCFP4_1024b1011numeric2 unique values
0 missing
FCFP4_1024b1012numeric1 unique values
0 missing
FCFP4_1024b1013numeric2 unique values
0 missing
FCFP4_1024b1014numeric1 unique values
0 missing
FCFP4_1024b1015numeric1 unique values
0 missing
FCFP4_1024b1016numeric2 unique values
0 missing
FCFP4_1024b1017numeric1 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b1019numeric2 unique values
0 missing
FCFP4_1024b102numeric2 unique values
0 missing
FCFP4_1024b1020numeric2 unique values
0 missing
FCFP4_1024b1021numeric1 unique values
0 missing
FCFP4_1024b1023numeric2 unique values
0 missing
FCFP4_1024b1024numeric2 unique values
0 missing
FCFP4_1024b103numeric2 unique values
0 missing
FCFP4_1024b104numeric1 unique values
0 missing
FCFP4_1024b105numeric2 unique values
0 missing
FCFP4_1024b106numeric2 unique values
0 missing
FCFP4_1024b107numeric2 unique values
0 missing
FCFP4_1024b108numeric2 unique values
0 missing
FCFP4_1024b109numeric1 unique values
0 missing
FCFP4_1024b11numeric2 unique values
0 missing
FCFP4_1024b110numeric2 unique values
0 missing
FCFP4_1024b111numeric2 unique values
0 missing
FCFP4_1024b112numeric2 unique values
0 missing
FCFP4_1024b113numeric2 unique values
0 missing
FCFP4_1024b114numeric2 unique values
0 missing
FCFP4_1024b115numeric2 unique values
0 missing
FCFP4_1024b116numeric1 unique values
0 missing
FCFP4_1024b117numeric1 unique values
0 missing
FCFP4_1024b118numeric2 unique values
0 missing
FCFP4_1024b119numeric2 unique values
0 missing
FCFP4_1024b12numeric2 unique values
0 missing
FCFP4_1024b120numeric2 unique values
0 missing
FCFP4_1024b121numeric2 unique values
0 missing
FCFP4_1024b122numeric2 unique values
0 missing
FCFP4_1024b123numeric2 unique values
0 missing
FCFP4_1024b124numeric2 unique values
0 missing
FCFP4_1024b125numeric1 unique values
0 missing

62 properties

406
Number of instances (rows) of the dataset.
104
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
103
Number of numeric attributes.
1
Number of nominal attributes.
0
Percentage of binary attributes.
0.19
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
406
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of missing values.
36.08
Third quartile of kurtosis among attributes of the numeric type.
7.62
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
99.04
Percentage of numeric attributes.
0.14
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0.96
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-3.34
Minimum skewness among attributes of the numeric type.
First quartile of entropy among attributes.
6.16
Third quartile of skewness among attributes of the numeric type.
20.15
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
1.78
First quartile of kurtosis among attributes of the numeric type.
0.34
Third quartile of standard deviation of attributes of the numeric type.
1.29
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.01
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of mutual information between the nominal attributes and the target attribute.
47.66
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
1.77
First quartile of skewness among attributes of the numeric type.
0.2
Mean of means among attributes of the numeric type.
0.1
First quartile of standard deviation of attributes of the numeric type.
-0.08
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
13.69
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.26
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.04
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5.01
Mean skewness among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
0.23
Mean standard deviation of attributes of the numeric type.
3.95
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task