Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5720

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5720

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5720 (TID: 101301), and it has 151 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric131 unique values
0 missing
molecule_id (row identifier)nominal151 unique values
0 missing
MATS3mnumeric113 unique values
0 missing
H.046numeric6 unique values
0 missing
H.051numeric3 unique values
0 missing
SM10_EA.ri.numeric101 unique values
0 missing
SM11_EA.ri.numeric101 unique values
0 missing
SM12_EA.ri.numeric101 unique values
0 missing
SaaNnumeric127 unique values
0 missing
GATS6vnumeric98 unique values
0 missing
ATSC4vnumeric121 unique values
0 missing
C.042numeric3 unique values
0 missing
C.032numeric4 unique values
0 missing
MPC10numeric85 unique values
0 missing
SAdonnumeric31 unique values
0 missing
SM09_EA.ri.numeric98 unique values
0 missing
SdsNnumeric13 unique values
0 missing
MATS1vnumeric83 unique values
0 missing
SpMax1_Bh.i.numeric47 unique values
0 missing
IC5numeric86 unique values
0 missing
P_VSA_e_3numeric16 unique values
0 missing
P_VSA_i_4numeric16 unique values
0 missing
SaasNnumeric108 unique values
0 missing
SaaaCnumeric116 unique values
0 missing
P_VSA_MR_2numeric32 unique values
0 missing
CATS2D_04_PLnumeric4 unique values
0 missing
IC4numeric82 unique values
0 missing
H.050numeric11 unique values
0 missing
Hynumeric83 unique values
0 missing
nHDonnumeric10 unique values
0 missing
SpMax1_Bh.e.numeric49 unique values
0 missing
AACnumeric84 unique values
0 missing
AECCnumeric88 unique values
0 missing
ALOGPnumeric117 unique values
0 missing
ALOGP2numeric121 unique values
0 missing
AMRnumeric122 unique values
0 missing
AMWnumeric106 unique values
0 missing
ARRnumeric32 unique values
0 missing
ATS1enumeric102 unique values
0 missing
ATS1inumeric99 unique values
0 missing
ATS1mnumeric109 unique values
0 missing
ATS1pnumeric103 unique values
0 missing
ATS1snumeric112 unique values
0 missing
ATS1vnumeric101 unique values
0 missing
ATS2enumeric110 unique values
0 missing
ATS2inumeric110 unique values
0 missing
ATS2mnumeric115 unique values
0 missing
ATS2pnumeric112 unique values
0 missing
ATS2snumeric117 unique values
0 missing
ATS2vnumeric106 unique values
0 missing
ATS3enumeric109 unique values
0 missing
ATS3inumeric117 unique values
0 missing
ATS3mnumeric127 unique values
0 missing
ATS3pnumeric118 unique values
0 missing
ATS3snumeric122 unique values
0 missing
ATS3vnumeric109 unique values
0 missing
ATS4enumeric122 unique values
0 missing
ATS4inumeric124 unique values
0 missing
ATS4mnumeric128 unique values
0 missing
ATS4pnumeric120 unique values
0 missing
ATS4snumeric129 unique values
0 missing
ATS4vnumeric107 unique values
0 missing
ATS5enumeric119 unique values
0 missing
ATS5inumeric123 unique values
0 missing
ATS5mnumeric129 unique values
0 missing
ATS5pnumeric124 unique values
0 missing
ATS5snumeric116 unique values
0 missing

62 properties

151
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
40.99
Maximum kurtosis among attributes of the numeric type.
-2.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
5.41
Third quartile of kurtosis among attributes of the numeric type.
200.71
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.42
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-4.82
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
1.69
Third quartile of skewness among attributes of the numeric type.
3.84
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.97
Third quartile of standard deviation of attributes of the numeric type.
46.23
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.82
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.77
First quartile of means among attributes of the numeric type.
4.62
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.57
Mean of means among attributes of the numeric type.
0.35
First quartile of skewness among attributes of the numeric type.
-0.3
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.44
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.65
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.02
Mean skewness among attributes of the numeric type.
4.53
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.93
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.12
Second quartile (Median) of skewness among attributes of the numeric type.
0.3
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.29
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task