Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2870

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2870

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2870 (TID: 12818), and it has 86 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric68 unique values
0 missing
molecule_id (row identifier)nominal86 unique values
0 missing
Eig07_AEA.bo.numeric65 unique values
0 missing
Eig07_AEA.dm.numeric56 unique values
0 missing
CATS2D_03_PLnumeric2 unique values
0 missing
CATS2D_06_PLnumeric3 unique values
0 missing
Eig07_AEA.ri.numeric76 unique values
0 missing
Eig07_EAnumeric69 unique values
0 missing
Eig07_EA.ri.numeric72 unique values
0 missing
Eig08_AEA.bo.numeric67 unique values
0 missing
Eig08_AEA.ri.numeric71 unique values
0 missing
Eig08_EAnumeric64 unique values
0 missing
Eig08_EA.ed.numeric64 unique values
0 missing
SM02_AEA.dm.numeric64 unique values
0 missing
SM03_AEA.ri.numeric64 unique values
0 missing
SM15_AEA.bo.numeric69 unique values
0 missing
Eig05_EAnumeric59 unique values
0 missing
SM13_AEA.bo.numeric59 unique values
0 missing
Eig08_EA.bo.numeric67 unique values
0 missing
Eig09_AEA.bo.numeric60 unique values
0 missing
SpMax3_Bh.v.numeric70 unique values
0 missing
Eig07_EA.ed.numeric68 unique values
0 missing
SM02_AEA.ri.numeric68 unique values
0 missing
MATS2mnumeric57 unique values
0 missing
SpMax3_Bh.s.numeric35 unique values
0 missing
Eig07_EA.bo.numeric59 unique values
0 missing
Eig08_EA.ri.numeric67 unique values
0 missing
Eig12_AEA.ed.numeric53 unique values
0 missing
ATS6vnumeric82 unique values
0 missing
Eig11_AEA.ed.numeric64 unique values
0 missing
C.019numeric3 unique values
0 missing
C.040numeric4 unique values
0 missing
CATS2D_05_PLnumeric3 unique values
0 missing
CATS2D_06_ALnumeric18 unique values
0 missing
Eig08_AEA.dm.numeric58 unique values
0 missing
Eig08_AEA.ed.numeric60 unique values
0 missing
Eig10_AEA.ed.numeric66 unique values
0 missing
MAXDPnumeric84 unique values
0 missing
N.068numeric2 unique values
0 missing
nCconjnumeric4 unique values
0 missing
nDBnumeric5 unique values
0 missing
NdssCnumeric5 unique values
0 missing
nRCONH2numeric2 unique values
0 missing
nR.Csnumeric3 unique values
0 missing
nRNR2numeric2 unique values
0 missing
SdOnumeric79 unique values
0 missing
SpMaxA_EA.bo.numeric45 unique values
0 missing
CATS2D_08_ALnumeric11 unique values
0 missing
Eig09_AEA.ed.numeric65 unique values
0 missing
Eig05_EA.ri.numeric68 unique values
0 missing
Eig09_AEA.ri.numeric73 unique values
0 missing
SpMax3_Bh.i.numeric56 unique values
0 missing
GATS7mnumeric77 unique values
0 missing
H.052numeric7 unique values
0 missing
nRCONHRnumeric2 unique values
0 missing
SsssNnumeric24 unique values
0 missing
SRW06numeric62 unique values
0 missing
SRW08numeric61 unique values
0 missing
GATS5mnumeric77 unique values
0 missing
MATS4pnumeric66 unique values
0 missing
Eig09_EA.ed.numeric64 unique values
0 missing
SM04_AEA.ri.numeric64 unique values
0 missing
Eig06_EAnumeric65 unique values
0 missing
SM14_AEA.bo.numeric65 unique values
0 missing
Eig09_AEA.dm.numeric63 unique values
0 missing

62 properties

86
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
9.01
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.38
Third quartile of kurtosis among attributes of the numeric type.
18.8
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.77
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.02
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
1.05
Third quartile of skewness among attributes of the numeric type.
2.63
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.99
Third quartile of standard deviation of attributes of the numeric type.
12.07
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.8
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.14
First quartile of means among attributes of the numeric type.
-0
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
2.7
Mean of means among attributes of the numeric type.
-0.4
First quartile of skewness among attributes of the numeric type.
0.35
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.28
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.76
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.52
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.22
Mean skewness among attributes of the numeric type.
2.12
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
0.88
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.2
Second quartile (Median) of skewness among attributes of the numeric type.
0.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.48
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task