Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5026

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5026

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5026 (TID: 20015), and it has 445 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric37 unique values
0 missing
molecule_id (row identifier)nominal445 unique values
0 missing
Eig01_AEA.ri.numeric248 unique values
0 missing
SpMax_AEA.ri.numeric248 unique values
0 missing
MATS3vnumeric257 unique values
0 missing
C.002numeric9 unique values
0 missing
SpDiam_AEA.ri.numeric280 unique values
0 missing
Eig01_EA.ri.numeric257 unique values
0 missing
SpMax_EA.ri.numeric257 unique values
0 missing
Eig01_EA.bo.numeric241 unique values
0 missing
SM11_AEA.ri.numeric241 unique values
0 missing
SpDiam_EA.bo.numeric242 unique values
0 missing
SpMax_EA.bo.numeric241 unique values
0 missing
Eig01_EA.ed.numeric305 unique values
0 missing
SM10_AEA.dm.numeric305 unique values
0 missing
SpMax_EA.ed.numeric305 unique values
0 missing
H.046numeric19 unique values
0 missing
SpDiam_EA.ri.numeric255 unique values
0 missing
CATS2D_07_PLnumeric9 unique values
0 missing
GATS3mnumeric270 unique values
0 missing
SpDiam_AEA.bo.numeric297 unique values
0 missing
MATS3mnumeric260 unique values
0 missing
SpDiam_EA.ed.numeric322 unique values
0 missing
Eig01_EAnumeric248 unique values
0 missing
SM09_AEA.bo.numeric248 unique values
0 missing
SpDiam_EAnumeric248 unique values
0 missing
SpMax_EAnumeric248 unique values
0 missing
CATS2D_04_DPnumeric3 unique values
0 missing
SssCH2numeric281 unique values
0 missing
SpDiam_AEA.ed.numeric322 unique values
0 missing
CATS2D_04_PPnumeric2 unique values
0 missing
Eig01_AEA.bo.numeric237 unique values
0 missing
SpMax_AEA.bo.numeric237 unique values
0 missing
CATS2D_08_PLnumeric7 unique values
0 missing
SM15_EA.ed.numeric381 unique values
0 missing
SM12_EA.ed.numeric382 unique values
0 missing
nCrsnumeric10 unique values
0 missing
nCsnumeric10 unique values
0 missing
SM13_EA.ed.numeric385 unique values
0 missing
CATS2D_05_APnumeric3 unique values
0 missing
CATS2D_09_PLnumeric6 unique values
0 missing
Eig01_AEA.ed.numeric257 unique values
0 missing
SpMax_AEA.ed.numeric257 unique values
0 missing
CATS2D_00_DDnumeric3 unique values
0 missing
CATS2D_00_DPnumeric3 unique values
0 missing
CATS2D_00_PPnumeric3 unique values
0 missing
NsNH2numeric3 unique values
0 missing
Eta_L_Anumeric121 unique values
0 missing
X4Anumeric39 unique values
0 missing
SM14_EA.ed.numeric381 unique values
0 missing
D.Dtr12numeric34 unique values
0 missing
NssCH2numeric11 unique values
0 missing
SsNH2numeric192 unique values
0 missing
CATS2D_03_PLnumeric5 unique values
0 missing
CATS2D_04_LLnumeric23 unique values
0 missing
SM11_EA.ed.numeric368 unique values
0 missing
X5Anumeric34 unique values
0 missing
Eta_FL_Anumeric120 unique values
0 missing
CATS2D_04_APnumeric5 unique values
0 missing
nR12numeric4 unique values
0 missing
P_VSA_LogP_5numeric354 unique values
0 missing
P_VSA_s_5numeric41 unique values
0 missing
X3Anumeric47 unique values
0 missing
SM10_EA.ed.numeric378 unique values
0 missing
ATSC5pnumeric432 unique values
0 missing
ATSC4pnumeric440 unique values
0 missing
ATSC6pnumeric438 unique values
0 missing
Eta_C_Anumeric310 unique values
0 missing
CATS2D_06_PLnumeric7 unique values
0 missing
PW5numeric51 unique values
0 missing

62 properties

445
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
117.45
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
1.92
Third quartile of kurtosis among attributes of the numeric type.
45.46
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.18
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.87
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
1.18
Third quartile of skewness among attributes of the numeric type.
9.16
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.49
Third quartile of standard deviation of attributes of the numeric type.
37.55
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.49
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.58
First quartile of means among attributes of the numeric type.
3.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.88
Mean of means among attributes of the numeric type.
-0.47
First quartile of skewness among attributes of the numeric type.
0.88
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.16
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.4
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.6
Mean skewness among attributes of the numeric type.
3.25
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.05
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.27
Second quartile (Median) of skewness among attributes of the numeric type.
0.59
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-0.64
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task