Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5136

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5136

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5136 (TID: 10014), and it has 979 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric502 unique values
0 missing
molecule_id (row identifier)nominal979 unique values
0 missing
D.Dtr09numeric253 unique values
0 missing
N.073numeric4 unique values
0 missing
NaaaCnumeric6 unique values
0 missing
SaaaCnumeric303 unique values
0 missing
nPyridinesnumeric4 unique values
0 missing
nR09numeric4 unique values
0 missing
DLS_05numeric3 unique values
0 missing
Mpnumeric166 unique values
0 missing
C.numeric169 unique values
0 missing
C.039numeric3 unique values
0 missing
nCsp3numeric33 unique values
0 missing
MCDnumeric237 unique values
0 missing
SpMin2_Bh.s.numeric289 unique values
0 missing
Rperimnumeric31 unique values
0 missing
H.046numeric43 unique values
0 missing
GATS1mnumeric396 unique values
0 missing
SssOnumeric583 unique values
0 missing
Eta_C_Anumeric531 unique values
0 missing
nImidazolesnumeric3 unique values
0 missing
ATSC3vnumeric892 unique values
0 missing
ATSC4vnumeric906 unique values
0 missing
C.043numeric4 unique values
0 missing
P_VSA_LogP_7numeric133 unique values
0 missing
ATSC3pnumeric867 unique values
0 missing
NssOnumeric10 unique values
0 missing
SpMax3_Bh.v.numeric276 unique values
0 missing
C.002numeric24 unique values
0 missing
ATSC1mnumeric729 unique values
0 missing
ATSC2vnumeric813 unique values
0 missing
SIC0numeric141 unique values
0 missing
ATSC1vnumeric712 unique values
0 missing
nHnumeric62 unique values
0 missing
Minumeric49 unique values
0 missing
NaaNnumeric6 unique values
0 missing
N.numeric114 unique values
0 missing
ATSC5vnumeric913 unique values
0 missing
Eig03_AEA.dm.numeric456 unique values
0 missing
DLS_07numeric3 unique values
0 missing
ATS4inumeric620 unique values
0 missing
SpMax1_Bh.i.numeric229 unique values
0 missing
RBFnumeric215 unique values
0 missing
ATSC2mnumeric821 unique values
0 missing
P_VSA_e_3numeric121 unique values
0 missing
CIC4numeric580 unique values
0 missing
ATSC3mnumeric897 unique values
0 missing
IC1numeric652 unique values
0 missing
ATSC1pnumeric704 unique values
0 missing
ATSC4mnumeric917 unique values
0 missing
Eig07_AEA.dm.numeric481 unique values
0 missing
ATS5inumeric640 unique values
0 missing
P_VSA_MR_1numeric90 unique values
0 missing
RBNnumeric31 unique values
0 missing
SIC1numeric337 unique values
0 missing
PHInumeric708 unique values
0 missing
ATSC2pnumeric809 unique values
0 missing
BIC0numeric128 unique values
0 missing
CATS2D_02_ALnumeric18 unique values
0 missing
nArCOnumeric3 unique values
0 missing
SpMax1_Bh.p.numeric277 unique values
0 missing
ATSC5enumeric643 unique values
0 missing
ARRnumeric198 unique values
0 missing
PDInumeric223 unique values
0 missing
ATS4enumeric601 unique values
0 missing
SM04_EA.bo.numeric572 unique values
0 missing
SaaNnumeric359 unique values
0 missing
SpMax3_Bh.e.numeric219 unique values
0 missing
SpMin1_Bh.s.numeric255 unique values
0 missing
SM15_EA.bo.numeric614 unique values
0 missing
SpMin3_Bh.i.numeric242 unique values
0 missing

62 properties

979
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
3.05
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.73
Third quartile of skewness among attributes of the numeric type.
175.78
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.97
First quartile of kurtosis among attributes of the numeric type.
6.51
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.79
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.15
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.7
Mean of means among attributes of the numeric type.
-0.08
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.
-0.13
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.73
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Number of attributes divided by the number of instances.
0.37
Mean skewness among attributes of the numeric type.
3.89
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
9.38
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.37
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.67
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.73
Second quartile (Median) of standard deviation of attributes of the numeric type.
12.51
Maximum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
389.87
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.03
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
12.98
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.3
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task