Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3433

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3433

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3433 (TID: 20126), and it has 182 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric119 unique values
0 missing
molecule_id (row identifier)nominal182 unique values
0 missing
RBFnumeric74 unique values
0 missing
Eig03_EA.dm.numeric34 unique values
0 missing
RCInumeric22 unique values
0 missing
RFDnumeric23 unique values
0 missing
D.Dtr05numeric76 unique values
0 missing
CATS2D_08_AAnumeric11 unique values
0 missing
D.Dtr09numeric74 unique values
0 missing
Eig08_AEA.ed.numeric89 unique values
0 missing
GATS3pnumeric114 unique values
0 missing
MWC06numeric117 unique values
0 missing
MWC07numeric119 unique values
0 missing
MWC08numeric120 unique values
0 missing
GATS7inumeric124 unique values
0 missing
Eig05_EA.dm.numeric36 unique values
0 missing
Eig08_EA.dm.numeric37 unique values
0 missing
Eig08_EA.ed.numeric96 unique values
0 missing
SM03_AEA.ri.numeric96 unique values
0 missing
CATS2D_05_AAnumeric11 unique values
0 missing
MWC09numeric116 unique values
0 missing
Eig09_EA.ed.numeric110 unique values
0 missing
SM04_AEA.ri.numeric110 unique values
0 missing
SM15_EA.dm.numeric60 unique values
0 missing
Eig05_EA.ed.numeric103 unique values
0 missing
SM14_AEA.dm.numeric103 unique values
0 missing
Eig09_EA.dm.numeric32 unique values
0 missing
CATS2D_03_DAnumeric13 unique values
0 missing
SM04_EA.dm.numeric101 unique values
0 missing
SM04_EAnumeric101 unique values
0 missing
MWC05numeric114 unique values
0 missing
Eig04_AEA.dm.numeric82 unique values
0 missing
Eig09_EAnumeric105 unique values
0 missing
SM03_AEA.dm.numeric105 unique values
0 missing
Qindexnumeric32 unique values
0 missing
Eig03_AEA.ri.numeric73 unique values
0 missing
NNRSnumeric12 unique values
0 missing
Eig05_AEA.dm.numeric91 unique values
0 missing
NsssCHnumeric14 unique values
0 missing
GGI3numeric82 unique values
0 missing
SpMax3_Bh.s.numeric40 unique values
0 missing
MPC05numeric83 unique values
0 missing
SRW06numeric111 unique values
0 missing
Eig10_AEA.ed.numeric102 unique values
0 missing
MWC10numeric115 unique values
0 missing
TWCnumeric118 unique values
0 missing
P_VSA_LogP_4numeric57 unique values
0 missing
SpMax6_Bh.s.numeric65 unique values
0 missing
Eig03_AEA.ed.numeric65 unique values
0 missing
Eig07_EA.dm.numeric37 unique values
0 missing
Eig03_EA.ed.numeric75 unique values
0 missing
SM12_AEA.dm.numeric75 unique values
0 missing
MPC06numeric85 unique values
0 missing
MPC07numeric85 unique values
0 missing
Eig11_AEA.ed.numeric86 unique values
0 missing
MATS7inumeric112 unique values
0 missing
SM03_EA.ri.numeric112 unique values
0 missing
Eig09_AEA.ri.numeric123 unique values
0 missing
X2vnumeric162 unique values
0 missing
SM02_EA.dm.numeric99 unique values
0 missing
Ramnumeric26 unique values
0 missing
GGI10numeric103 unique values
0 missing
SpAD_EA.dm.numeric103 unique values
0 missing
nDBnumeric12 unique values
0 missing
NdOnumeric12 unique values
0 missing
O.058numeric12 unique values
0 missing
SdOnumeric164 unique values
0 missing

62 properties

182
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
2.25
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.82
Third quartile of skewness among attributes of the numeric type.
502.53
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.14
First quartile of kurtosis among attributes of the numeric type.
1.7
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.63
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.33
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.09
Mean of means among attributes of the numeric type.
-0.22
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.89
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.37
Number of attributes divided by the number of instances.
0.29
Mean skewness among attributes of the numeric type.
5.11
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
15.36
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.35
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.65
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
13.79
Maximum kurtosis among attributes of the numeric type.
0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
306.76
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.53
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
9.02
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.91
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task