Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3691

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3691

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3691 (TID: 100594), and it has 164 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric146 unique values
0 missing
molecule_id (row identifier)nominal164 unique values
0 missing
ATS5mnumeric129 unique values
0 missing
GGI9numeric87 unique values
0 missing
X0solnumeric92 unique values
0 missing
AMRnumeric123 unique values
0 missing
ATS7mnumeric133 unique values
0 missing
Eig02_EA.ed.numeric70 unique values
0 missing
SM11_AEA.dm.numeric70 unique values
0 missing
Eig10_EA.bo.numeric94 unique values
0 missing
Eig13_AEA.dm.numeric89 unique values
0 missing
SpMin1_Bh.p.numeric64 unique values
0 missing
Eig02_AEA.ed.numeric60 unique values
0 missing
Eig10_AEA.bo.numeric92 unique values
0 missing
TIC1numeric117 unique values
0 missing
SdOnumeric137 unique values
0 missing
Eig12_AEA.dm.numeric106 unique values
0 missing
X3solnumeric113 unique values
0 missing
GGI6numeric82 unique values
0 missing
ATS6mnumeric134 unique values
0 missing
Eig11_AEA.dm.numeric92 unique values
0 missing
MWnumeric121 unique values
0 missing
MWC03numeric81 unique values
0 missing
ZM2numeric81 unique values
0 missing
Eig10_EA.ed.numeric95 unique values
0 missing
SM05_AEA.ri.numeric95 unique values
0 missing
ATS8mnumeric137 unique values
0 missing
ZM1Madnumeric118 unique values
0 missing
X4numeric105 unique values
0 missing
P_VSA_m_2numeric94 unique values
0 missing
Eig03_EA.bo.numeric73 unique values
0 missing
Eig04_AEA.dm.numeric76 unique values
0 missing
Eig05_AEA.bo.numeric99 unique values
0 missing
Eig05_EA.bo.numeric93 unique values
0 missing
Eig06_AEA.bo.numeric99 unique values
0 missing
Eig06_AEA.ed.numeric88 unique values
0 missing
Eig06_EA.bo.numeric97 unique values
0 missing
Eig07_EA.bo.numeric98 unique values
0 missing
Eta_betaPnumeric48 unique values
0 missing
Eta_Fnumeric141 unique values
0 missing
Eta_FLnumeric114 unique values
0 missing
GGI3numeric66 unique values
0 missing
MWC07numeric105 unique values
0 missing
nABnumeric15 unique values
0 missing
nBMnumeric33 unique values
0 missing
nCarnumeric19 unique values
0 missing
nCsp2numeric27 unique values
0 missing
nR06numeric8 unique values
0 missing
piPC02numeric79 unique values
0 missing
piPC03numeric94 unique values
0 missing
piPC04numeric101 unique values
0 missing
piPC07numeric110 unique values
0 missing
P_VSA_MR_6numeric81 unique values
0 missing
PW5numeric39 unique values
0 missing
Qindexnumeric39 unique values
0 missing
Rperimnumeric20 unique values
0 missing
SM02_EA.bo.numeric79 unique values
0 missing
SM04_EA.bo.numeric99 unique values
0 missing
SM06_EA.bo.numeric111 unique values
0 missing
SM13_AEA.ri.numeric73 unique values
0 missing
SM15_AEA.ri.numeric93 unique values
0 missing
SpMin2_Bh.e.numeric70 unique values
0 missing
SpMin2_Bh.i.numeric74 unique values
0 missing
SRW10numeric101 unique values
0 missing
TRSnumeric17 unique values
0 missing
Ucnumeric33 unique values
0 missing
Uinumeric32 unique values
0 missing

62 properties

164
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
2.32
Maximum kurtosis among attributes of the numeric type.
0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
0.01
Third quartile of kurtosis among attributes of the numeric type.
548.35
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
16.19
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-0.71
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
0.75
Third quartile of skewness among attributes of the numeric type.
1.61
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
11.13
Third quartile of standard deviation of attributes of the numeric type.
167.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.62
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.91
First quartile of means among attributes of the numeric type.
-0.26
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
32.75
Mean of means among attributes of the numeric type.
0.03
First quartile of skewness among attributes of the numeric type.
0.28
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.62
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.41
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.42
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.42
Mean skewness among attributes of the numeric type.
5.05
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
13.03
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.45
Second quartile (Median) of skewness among attributes of the numeric type.
0.91
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.3
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task