Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4408

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4408

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4408 (TID: 100009), and it has 179 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric123 unique values
0 missing
molecule_id (row identifier)nominal179 unique values
0 missing
GATS1snumeric121 unique values
0 missing
MATS2inumeric131 unique values
0 missing
ATSC7enumeric141 unique values
0 missing
ATSC8enumeric136 unique values
0 missing
P_VSA_m_3numeric40 unique values
0 missing
SpAD_EA.dm.numeric62 unique values
0 missing
CATS2D_04_APnumeric4 unique values
0 missing
ATSC5enumeric134 unique values
0 missing
SpDiam_EA.ed.numeric66 unique values
0 missing
Eig01_EA.bo.numeric35 unique values
0 missing
SM11_AEA.ri.numeric35 unique values
0 missing
SpDiam_EA.bo.numeric36 unique values
0 missing
SpMax_EA.bo.numeric35 unique values
0 missing
Eig01_EAnumeric53 unique values
0 missing
SM09_AEA.bo.numeric53 unique values
0 missing
SpDiam_EAnumeric53 unique values
0 missing
SpMax_EAnumeric53 unique values
0 missing
CATS2D_03_APnumeric3 unique values
0 missing
Eig01_AEA.bo.numeric45 unique values
0 missing
SpMax_AEA.bo.numeric45 unique values
0 missing
SsNH2numeric81 unique values
0 missing
MATS7snumeric138 unique values
0 missing
ATSC7snumeric159 unique values
0 missing
N.070numeric2 unique values
0 missing
nArNHRnumeric2 unique values
0 missing
GATS7enumeric144 unique values
0 missing
GATS7inumeric143 unique values
0 missing
DELSnumeric160 unique values
0 missing
ATSC8snumeric159 unique values
0 missing
SsFnumeric40 unique values
0 missing
ATSC2enumeric135 unique values
0 missing
ATSC6enumeric146 unique values
0 missing
CATS2D_00_DDnumeric3 unique values
0 missing
CATS2D_00_DPnumeric3 unique values
0 missing
CATS2D_00_PPnumeric3 unique values
0 missing
CATS2D_02_APnumeric3 unique values
0 missing
N.069numeric2 unique values
0 missing
nArNH2numeric2 unique values
0 missing
NsNH2numeric3 unique values
0 missing
P_VSA_MR_2numeric53 unique values
0 missing
SpDiam_AEA.ed.numeric73 unique values
0 missing
SpMax4_Bh.s.numeric80 unique values
0 missing
ATSC3enumeric145 unique values
0 missing
Eig01_AEA.ri.numeric61 unique values
0 missing
Eig01_EA.ed.numeric58 unique values
0 missing
SM10_AEA.dm.numeric58 unique values
0 missing
SM11_EA.ed.numeric101 unique values
0 missing
SM12_EA.ed.numeric97 unique values
0 missing
SM13_EA.ed.numeric91 unique values
0 missing
SM14_EA.ed.numeric90 unique values
0 missing
SM15_EA.ed.numeric89 unique values
0 missing
SpMax_AEA.ri.numeric61 unique values
0 missing
SpMax_EA.ed.numeric58 unique values
0 missing
ATSC6snumeric159 unique values
0 missing
GATS7snumeric147 unique values
0 missing
P_VSA_LogP_3numeric39 unique values
0 missing
P_VSA_MR_6numeric82 unique values
0 missing
ATS2snumeric142 unique values
0 missing
SpMAD_EA.dm.numeric101 unique values
0 missing
SpDiam_AEA.ri.numeric90 unique values
0 missing
AACnumeric119 unique values
0 missing
IC0numeric119 unique values
0 missing
GATS8inumeric135 unique values
0 missing

62 properties

179
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.36
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.51
Mean skewness among attributes of the numeric type.
4.14
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.69
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.47
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-2.02
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
19.84
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
66.84
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.55
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
10.86
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.13
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.06
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.73
Third quartile of skewness among attributes of the numeric type.
42.72
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.11
First quartile of kurtosis among attributes of the numeric type.
1.02
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.58
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.61
Mean of means among attributes of the numeric type.
0.26
First quartile of skewness among attributes of the numeric type.
0.16
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.17
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task