Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1255149

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1255149

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1255149 (TID: 103560), and it has 142 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric115 unique values
0 missing
molecule_id (row identifier)nominal142 unique values
0 missing
GATS1enumeric90 unique values
0 missing
P_VSA_LogP_6numeric20 unique values
0 missing
SpMin2_Bh.s.numeric44 unique values
0 missing
ATSC5mnumeric134 unique values
0 missing
Eig03_AEA.ed.numeric63 unique values
0 missing
X5vnumeric128 unique values
0 missing
P_VSA_s_3numeric84 unique values
0 missing
ATS6mnumeric121 unique values
0 missing
Eig03_EA.ed.numeric72 unique values
0 missing
SM12_AEA.dm.numeric72 unique values
0 missing
Eig09_AEA.ed.numeric68 unique values
0 missing
C.008numeric4 unique values
0 missing
SM07_EA.ri.numeric127 unique values
0 missing
CATS2D_03_ALnumeric19 unique values
0 missing
C.003numeric4 unique values
0 missing
SpMin3_Bh.s.numeric62 unique values
0 missing
ATS5pnumeric119 unique values
0 missing
ATSC5vnumeric133 unique values
0 missing
ATS4snumeric117 unique values
0 missing
MATS8inumeric116 unique values
0 missing
F.084numeric5 unique values
0 missing
nCrtnumeric4 unique values
0 missing
nCtnumeric5 unique values
0 missing
SpMax2_Bh.s.numeric45 unique values
0 missing
ATSC7mnumeric134 unique values
0 missing
GGI3numeric66 unique values
0 missing
SM05_EA.ri.numeric119 unique values
0 missing
SM06_EA.ri.numeric121 unique values
0 missing
SM08_EA.ri.numeric120 unique values
0 missing
SpMAD_AEA.ed.numeric60 unique values
0 missing
ATSC7vnumeric133 unique values
0 missing
Eig05_AEA.ri.numeric110 unique values
0 missing
MAXDPnumeric125 unique values
0 missing
ATSC4pnumeric134 unique values
0 missing
SpMAD_EA.ed.numeric84 unique values
0 missing
ATSC4inumeric125 unique values
0 missing
SaaaCnumeric39 unique values
0 missing
SM11_EA.ri.numeric121 unique values
0 missing
SM12_EA.ri.numeric131 unique values
0 missing
SM13_EA.ri.numeric133 unique values
0 missing
SM14_EA.ri.numeric133 unique values
0 missing
ATSC8enumeric129 unique values
0 missing
ATSC3inumeric117 unique values
0 missing
ATSC8snumeric134 unique values
0 missing
ATSC6inumeric133 unique values
0 missing
Eig01_EA.bo.numeric35 unique values
0 missing
SM11_AEA.ri.numeric35 unique values
0 missing
SpDiam_EA.bo.numeric35 unique values
0 missing
SpMax_EA.bo.numeric35 unique values
0 missing
X4vnumeric133 unique values
0 missing
Eta_beta_Anumeric73 unique values
0 missing
P_VSA_p_1numeric49 unique values
0 missing
ATS4vnumeric117 unique values
0 missing
SM09_EA.ri.numeric118 unique values
0 missing
NaaaCnumeric2 unique values
0 missing
ATSC5inumeric133 unique values
0 missing
SsFnumeric74 unique values
0 missing
ATSC7inumeric130 unique values
0 missing
MATS7inumeric111 unique values
0 missing
SpMax1_Bh.s.numeric27 unique values
0 missing
Eig13_AEA.ed.numeric57 unique values
0 missing

62 properties

142
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.44
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.72
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.15
Mean skewness among attributes of the numeric type.
4.54
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.19
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.62
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.56
Second quartile (Median) of standard deviation of attributes of the numeric type.
3.06
Maximum kurtosis among attributes of the numeric type.
-0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
339.5
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.38
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.41
Percentage of numeric attributes.
10.42
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.85
Minimum skewness among attributes of the numeric type.
1.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.88
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
65.15
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.13
First quartile of kurtosis among attributes of the numeric type.
1.25
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.06
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.56
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
15.2
Mean of means among attributes of the numeric type.
-0.64
First quartile of skewness among attributes of the numeric type.
0.17
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.24
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task