Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL275

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL275

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL275 (TID: 10599), and it has 695 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric422 unique values
0 missing
molecule_id (row identifier)nominal695 unique values
0 missing
Eig02_EAnumeric284 unique values
0 missing
SM10_AEA.bo.numeric284 unique values
0 missing
SM07_AEA.bo.numeric428 unique values
0 missing
SM03_EA.ed.numeric283 unique values
0 missing
SM05_EAnumeric121 unique values
0 missing
SM06_AEA.bo.numeric418 unique values
0 missing
SM07_EAnumeric356 unique values
0 missing
SM03_EA.bo.numeric121 unique values
0 missing
SM06_EAnumeric415 unique values
0 missing
SM06_AEA.ed.numeric405 unique values
0 missing
SM08_AEA.ed.numeric410 unique values
0 missing
SM08_EAnumeric427 unique values
0 missing
SM08_AEA.bo.numeric443 unique values
0 missing
SM03_EAnumeric25 unique values
0 missing
Eig05_AEA.bo.numeric379 unique values
0 missing
Eig02_AEA.ri.numeric335 unique values
0 missing
Eig05_EA.bo.numeric377 unique values
0 missing
SM15_AEA.ri.numeric377 unique values
0 missing
SM05_AEA.ed.numeric409 unique values
0 missing
SM07_AEA.ed.numeric418 unique values
0 missing
SM09_AEA.ed.numeric414 unique values
0 missing
SM09_EAnumeric415 unique values
0 missing
SM10_EAnumeric439 unique values
0 missing
SM13_EAnumeric432 unique values
0 missing
SM04_EA.ed.numeric432 unique values
0 missing
SM03_EA.ri.numeric371 unique values
0 missing
SM05_EA.ed.numeric421 unique values
0 missing
SM04_AEA.ed.numeric391 unique values
0 missing
SM11_AEA.ed.numeric421 unique values
0 missing
SM11_EAnumeric421 unique values
0 missing
SM12_EAnumeric441 unique values
0 missing
SM10_AEA.ed.numeric417 unique values
0 missing
SM12_AEA.ed.numeric420 unique values
0 missing
SM06_EA.ed.numeric434 unique values
0 missing
SM14_EAnumeric451 unique values
0 missing
SM04_EA.bo.numeric412 unique values
0 missing
Eig02_EA.ed.numeric336 unique values
0 missing
SM11_AEA.dm.numeric336 unique values
0 missing
SM13_AEA.ed.numeric410 unique values
0 missing
Eig02_AEA.ed.numeric256 unique values
0 missing
SM04_AEA.bo.numeric412 unique values
0 missing
ATS1mnumeric418 unique values
0 missing
ZM2Madnumeric633 unique values
0 missing
Eig02_AEA.bo.numeric318 unique values
0 missing
Eig07_EA.ed.numeric408 unique values
0 missing
SM02_AEA.ri.numeric408 unique values
0 missing
Eig06_EA.bo.numeric341 unique values
0 missing
Eig03_AEA.ed.numeric321 unique values
0 missing
P_VSA_i_4numeric187 unique values
0 missing
piPC03numeric342 unique values
0 missing
SM05_EA.ri.numeric463 unique values
0 missing
ATSC6enumeric478 unique values
0 missing
Eta_F_Anumeric414 unique values
0 missing
MPC09numeric235 unique values
0 missing
MPC10numeric255 unique values
0 missing
piPC02numeric228 unique values
0 missing
SM02_EA.bo.numeric228 unique values
0 missing
SM04_EA.ri.numeric474 unique values
0 missing
SM07_EA.ri.numeric501 unique values
0 missing
Eig06_AEA.bo.numeric323 unique values
0 missing
Eig08_AEA.ed.numeric400 unique values
0 missing
SRW10numeric390 unique values
0 missing
X2solnumeric473 unique values
0 missing
MPC07numeric184 unique values
0 missing
piPC05numeric422 unique values
0 missing
Eig04_EA.ri.numeric398 unique values
0 missing
piIDnumeric459 unique values
0 missing
Polnumeric61 unique values
0 missing

62 properties

695
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.1
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.07
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0
Mean skewness among attributes of the numeric type.
7.84
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.05
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.09
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
26.44
Maximum kurtosis among attributes of the numeric type.
0.63
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
220.57
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.51
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
12.99
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.28
Maximum skewness among attributes of the numeric type.
0.18
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.08
Third quartile of skewness among attributes of the numeric type.
58.01
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.32
First quartile of kurtosis among attributes of the numeric type.
0.61
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
4.55
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.3
Mean of means among attributes of the numeric type.
-0.24
First quartile of skewness among attributes of the numeric type.
0.04
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task