Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4267

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4267

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4267 (TID: 100075), and it has 145 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric59 unique values
0 missing
molecule_id (row identifier)nominal145 unique values
0 missing
Psi_e_Anumeric126 unique values
0 missing
Psi_i_Anumeric126 unique values
0 missing
H.050numeric7 unique values
0 missing
nHDonnumeric7 unique values
0 missing
SAdonnumeric38 unique values
0 missing
SpMax1_Bh.s.numeric42 unique values
0 missing
SpMax2_Bh.s.numeric70 unique values
0 missing
P_VSA_p_2numeric101 unique values
0 missing
SaasNnumeric49 unique values
0 missing
nCtnumeric4 unique values
0 missing
TPSA.NO.numeric99 unique values
0 missing
P_VSA_v_2numeric104 unique values
0 missing
CATS2D_02_LLnumeric30 unique values
0 missing
CATS2D_04_LLnumeric28 unique values
0 missing
SdssCnumeric97 unique values
0 missing
C.038numeric3 unique values
0 missing
NdssCnumeric8 unique values
0 missing
nRC.Nnumeric2 unique values
0 missing
MATS1snumeric100 unique values
0 missing
SpMin1_Bh.s.numeric100 unique values
0 missing
CATS2D_03_LLnumeric28 unique values
0 missing
nCrtnumeric3 unique values
0 missing
Hynumeric114 unique values
0 missing
ATSC5snumeric145 unique values
0 missing
Eig02_EA.dm.numeric30 unique values
0 missing
SAaccnumeric101 unique values
0 missing
O.057numeric3 unique values
0 missing
TPSA.Tot.numeric101 unique values
0 missing
CATS2D_04_DLnumeric11 unique values
0 missing
MATS1enumeric108 unique values
0 missing
P_VSA_e_3numeric78 unique values
0 missing
SpMin1_Bh.m.numeric82 unique values
0 missing
nCconjnumeric7 unique values
0 missing
nNnumeric8 unique values
0 missing
SpMin2_Bh.m.numeric100 unique values
0 missing
Eig03_EA.dm.numeric21 unique values
0 missing
Eig01_EA.ed.numeric97 unique values
0 missing
SM10_AEA.dm.numeric97 unique values
0 missing
SpMax_EA.ed.numeric97 unique values
0 missing
JGI8numeric16 unique values
0 missing
N.numeric74 unique values
0 missing
C.003numeric4 unique values
0 missing
Eta_betaS_Anumeric80 unique values
0 missing
SpMAD_EA.dm.numeric107 unique values
0 missing
D.Dtr08numeric19 unique values
0 missing
C.019numeric3 unique values
0 missing
MATS3snumeric106 unique values
0 missing
SsOHnumeric57 unique values
0 missing
MATS2enumeric117 unique values
0 missing
GATS2enumeric122 unique values
0 missing
C.017numeric3 unique values
0 missing
nR.Ctnumeric3 unique values
0 missing
Eig01_AEA.ed.numeric90 unique values
0 missing
Eig01_EAnumeric86 unique values
0 missing
SM09_AEA.bo.numeric86 unique values
0 missing
SpDiam_EAnumeric86 unique values
0 missing
SpMax_AEA.ed.numeric90 unique values
0 missing
SpMax_EAnumeric86 unique values
0 missing
NaasNnumeric3 unique values
0 missing
SpDiam_EA.ed.numeric107 unique values
0 missing
GATS2snumeric127 unique values
0 missing
P_VSA_LogP_6numeric56 unique values
0 missing
MAXDNnumeric133 unique values
0 missing
JGI7numeric21 unique values
0 missing
CATS2D_01_LLnumeric25 unique values
0 missing
CATS2D_06_LLnumeric30 unique values
0 missing

62 properties

145
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.47
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.7
Mean skewness among attributes of the numeric type.
2.36
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.76
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.92
Second quartile (Median) of standard deviation of attributes of the numeric type.
4.46
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
115.14
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.23
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
10.81
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.1
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.31
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.05
Third quartile of skewness among attributes of the numeric type.
37.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.69
First quartile of kurtosis among attributes of the numeric type.
4.02
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.55
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.85
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.48
Mean of means among attributes of the numeric type.
0.44
First quartile of skewness among attributes of the numeric type.
0.52
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task