Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3385

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3385

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3385 (TID: 11639), and it has 201 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric72 unique values
0 missing
molecule_id (row identifier)nominal201 unique values
0 missing
nArCNOnumeric2 unique values
0 missing
SdssCnumeric140 unique values
0 missing
NdsNnumeric3 unique values
0 missing
MATS1enumeric149 unique values
0 missing
C.039numeric3 unique values
0 missing
SaasCnumeric196 unique values
0 missing
P_VSA_LogP_5numeric166 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
Yindexnumeric162 unique values
0 missing
nPyrazolesnumeric3 unique values
0 missing
NdOnumeric6 unique values
0 missing
O.058numeric6 unique values
0 missing
SdOnumeric124 unique values
0 missing
MATS1snumeric141 unique values
0 missing
SdsNnumeric30 unique values
0 missing
SpMax1_Bh.s.numeric60 unique values
0 missing
Vindexnumeric115 unique values
0 missing
GATS3snumeric165 unique values
0 missing
GATS7snumeric184 unique values
0 missing
C.025numeric9 unique values
0 missing
DECCnumeric173 unique values
0 missing
MATS7inumeric167 unique values
0 missing
nROHnumeric4 unique values
0 missing
CATS2D_01_AAnumeric4 unique values
0 missing
CATS2D_03_LLnumeric22 unique values
0 missing
ICRnumeric167 unique values
0 missing
N.074numeric3 unique values
0 missing
ATSC2enumeric170 unique values
0 missing
Eig02_AEA.dm.numeric166 unique values
0 missing
Xindexnumeric133 unique values
0 missing
SsOHnumeric69 unique values
0 missing
AECCnumeric177 unique values
0 missing
ATSC6enumeric183 unique values
0 missing
CATS2D_04_LLnumeric20 unique values
0 missing
HVcpxnumeric174 unique values
0 missing
P_VSA_e_2numeric194 unique values
0 missing
P_VSA_s_3numeric186 unique values
0 missing
ATSC7enumeric181 unique values
0 missing
Eig02_EA.bo.numeric156 unique values
0 missing
SM12_AEA.ri.numeric156 unique values
0 missing
IDEnumeric176 unique values
0 missing
MSDnumeric184 unique values
0 missing
MATS1inumeric162 unique values
0 missing
N.072numeric5 unique values
0 missing
GATS7inumeric165 unique values
0 missing
CATS2D_02_DAnumeric7 unique values
0 missing
NRSnumeric7 unique values
0 missing
Eig09_AEA.dm.numeric171 unique values
0 missing
Eig08_AEA.dm.numeric178 unique values
0 missing
TRSnumeric30 unique values
0 missing
Eta_sh_pnumeric136 unique values
0 missing
H.049numeric5 unique values
0 missing
X2Anumeric50 unique values
0 missing
GATS3enumeric169 unique values
0 missing
GATS7pnumeric170 unique values
0 missing
X3Anumeric36 unique values
0 missing
P_VSA_LogP_4numeric146 unique values
0 missing
MAXDPnumeric193 unique values
0 missing
PDInumeric118 unique values
0 missing
SRW09numeric62 unique values
0 missing
MDDDnumeric188 unique values
0 missing
P_VSA_p_3numeric194 unique values
0 missing
P_VSA_v_3numeric194 unique values
0 missing
nCICnumeric11 unique values
0 missing
Eig05_AEA.dm.numeric179 unique values
0 missing
SaaNnumeric156 unique values
0 missing
UNIPnumeric120 unique values
0 missing
ECCnumeric156 unique values
0 missing

62 properties

201
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.35
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.24
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.28
Mean skewness among attributes of the numeric type.
1.63
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
10.53
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.73
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.15
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.59
Second quartile (Median) of standard deviation of attributes of the numeric type.
168.45
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
376.89
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
9.48
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
6.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-9.59
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
12.43
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.86
Third quartile of skewness among attributes of the numeric type.
239.23
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.39
First quartile of kurtosis among attributes of the numeric type.
3.25
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.34
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
16.56
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.32
Mean of means among attributes of the numeric type.
-0.09
First quartile of skewness among attributes of the numeric type.
0.41
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.32
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task