Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL209

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL209

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL209 (TID: 42), and it has 1302 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric522 unique values
0 missing
molecule_id (row identifier)nominal1302 unique values
0 missing
GATS5mnumeric457 unique values
0 missing
N.066numeric5 unique values
0 missing
nRNH2numeric5 unique values
0 missing
CATS2D_00_DDnumeric6 unique values
0 missing
CATS2D_00_DPnumeric6 unique values
0 missing
CATS2D_00_PPnumeric6 unique values
0 missing
NsNH2numeric6 unique values
0 missing
CATS2D_04_PLnumeric8 unique values
0 missing
GATS5pnumeric397 unique values
0 missing
nArCONHRnumeric3 unique values
0 missing
SM05_EA.dm.numeric257 unique values
0 missing
P_VSA_p_3numeric1012 unique values
0 missing
P_VSA_v_3numeric1012 unique values
0 missing
GATS5vnumeric338 unique values
0 missing
B.112numeric2 unique values
0 missing
nBnumeric2 unique values
0 missing
NsssBnumeric2 unique values
0 missing
SsssBnumeric53 unique values
0 missing
CATS2D_07_APnumeric4 unique values
0 missing
MATS7enumeric472 unique values
0 missing
RCInumeric42 unique values
0 missing
MATS5pnumeric336 unique values
0 missing
C.009numeric3 unique values
0 missing
RFDnumeric42 unique values
0 missing
SM09_EA.dm.numeric281 unique values
0 missing
Eig01_AEA.ed.numeric387 unique values
0 missing
SpMax_AEA.ed.numeric387 unique values
0 missing
SsNH2numeric750 unique values
0 missing
SdNHnumeric489 unique values
0 missing
Eig01_EA.ed.numeric508 unique values
0 missing
SM10_AEA.dm.numeric508 unique values
0 missing
SpMax_EA.ed.numeric508 unique values
0 missing
Cl.089numeric3 unique values
0 missing
Eig01_EAnumeric403 unique values
0 missing
SM09_AEA.bo.numeric403 unique values
0 missing
SpMax_EAnumeric403 unique values
0 missing
SpDiam_EA.bo.numeric391 unique values
0 missing
Eig01_EA.bo.numeric382 unique values
0 missing
SM11_AEA.ri.numeric382 unique values
0 missing
SpMax_EA.bo.numeric382 unique values
0 missing
SpDiam_EAnumeric404 unique values
0 missing
NdNHnumeric3 unique values
0 missing
nArXnumeric3 unique values
0 missing
SsClnumeric164 unique values
0 missing
CATS2D_02_PLnumeric6 unique values
0 missing
SM03_EA.dm.numeric151 unique values
0 missing
CATS2D_07_DPnumeric4 unique values
0 missing
P_VSA_e_4numeric3 unique values
0 missing
nCLnumeric3 unique values
0 missing
NsClnumeric3 unique values
0 missing
SAdonnumeric129 unique values
0 missing
P_VSA_e_3numeric265 unique values
0 missing
Eta_alpha_Anumeric76 unique values
0 missing
DECCnumeric621 unique values
0 missing
P_VSA_MR_7numeric124 unique values
0 missing
SpDiam_EA.ed.numeric588 unique values
0 missing
AECCnumeric737 unique values
0 missing
HVcpxnumeric530 unique values
0 missing
IDEnumeric547 unique values
0 missing
MSDnumeric840 unique values
0 missing
GATS2mnumeric424 unique values
0 missing
CATS2D_02_PPnumeric3 unique values
0 missing
GATS7enumeric709 unique values
0 missing
P_VSA_LogP_8numeric13 unique values
0 missing
JGI10numeric14 unique values
0 missing
MATS3inumeric388 unique values
0 missing
CATS2D_02_DPnumeric5 unique values
0 missing
GATS5inumeric375 unique values
0 missing
SM15_EA.dm.numeric242 unique values
0 missing
SM12_EA.dm.numeric373 unique values
0 missing

62 properties

1302
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.06
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.74
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.66
Mean skewness among attributes of the numeric type.
1.25
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.17
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.38
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.09
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.54
Second quartile (Median) of standard deviation of attributes of the numeric type.
124.08
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
147.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
5.17
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
6.94
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-6.91
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.6
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.81
Third quartile of skewness among attributes of the numeric type.
45.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.22
First quartile of kurtosis among attributes of the numeric type.
1.72
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.28
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.74
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.36
Mean of means among attributes of the numeric type.
-0.35
First quartile of skewness among attributes of the numeric type.
-0.27
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task