Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5203

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5203

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5203 (TID: 100305), and it has 135 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric81 unique values
0 missing
molecule_id (row identifier)nominal135 unique values
0 missing
CIC4numeric99 unique values
0 missing
CIC5numeric97 unique values
0 missing
SIC4numeric83 unique values
0 missing
CATS2D_08_ALnumeric18 unique values
0 missing
IDDEnumeric86 unique values
0 missing
SIC5numeric83 unique values
0 missing
UNIPnumeric74 unique values
0 missing
BIC4numeric81 unique values
0 missing
BIC5numeric78 unique values
0 missing
SIC3numeric90 unique values
0 missing
IC1numeric101 unique values
0 missing
BIC3numeric83 unique values
0 missing
CIC3numeric109 unique values
0 missing
IC4numeric100 unique values
0 missing
IC2numeric111 unique values
0 missing
MDDDnumeric109 unique values
0 missing
Eig02_EA.bo.numeric68 unique values
0 missing
SM12_AEA.ri.numeric68 unique values
0 missing
IC5numeric100 unique values
0 missing
SIC2numeric92 unique values
0 missing
MATS4inumeric103 unique values
0 missing
CIC2numeric116 unique values
0 missing
Eta_Lnumeric117 unique values
0 missing
BIC1numeric82 unique values
0 missing
SIC1numeric78 unique values
0 missing
Eig01_AEA.ed.numeric49 unique values
0 missing
Eig01_EA.ed.numeric56 unique values
0 missing
SM10_AEA.dm.numeric56 unique values
0 missing
SM10_EA.ed.numeric86 unique values
0 missing
SM11_EA.ed.numeric84 unique values
0 missing
SM12_EA.ed.numeric78 unique values
0 missing
SM13_EA.ed.numeric71 unique values
0 missing
SM14_EA.ed.numeric75 unique values
0 missing
SM15_EA.ed.numeric76 unique values
0 missing
SpDiam_AEA.ed.numeric68 unique values
0 missing
SpMax_AEA.ed.numeric49 unique values
0 missing
SpMax_EA.ed.numeric56 unique values
0 missing
Eig03_EA.bo.numeric40 unique values
0 missing
SM13_AEA.ri.numeric40 unique values
0 missing
CIC1numeric107 unique values
0 missing
SpMax3_Bh.m.numeric56 unique values
0 missing
Eig03_AEA.bo.numeric58 unique values
0 missing
CATS2D_09_ALnumeric18 unique values
0 missing
nCrsnumeric5 unique values
0 missing
Eig04_EAnumeric68 unique values
0 missing
SM12_AEA.bo.numeric68 unique values
0 missing
SM07_EA.ed.numeric95 unique values
0 missing
SM08_EA.ed.numeric92 unique values
0 missing
SM09_EA.ed.numeric85 unique values
0 missing
SpMax3_Bh.i.numeric62 unique values
0 missing
SpDiam_AEA.ri.numeric95 unique values
0 missing
SAtotnumeric101 unique values
0 missing
SM05_EA.bo.numeric81 unique values
0 missing
SM07_EA.bo.numeric96 unique values
0 missing
Eig15_EA.bo.numeric89 unique values
0 missing
MATS1enumeric83 unique values
0 missing
Eig01_AEA.ri.numeric65 unique values
0 missing
Eig01_EA.ri.numeric64 unique values
0 missing
SpMax_AEA.ri.numeric65 unique values
0 missing
SpMax_EA.ri.numeric64 unique values
0 missing
ATSC3mnumeric117 unique values
0 missing
SRW05numeric7 unique values
0 missing

62 properties

135
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.47
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.83
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.16
Mean skewness among attributes of the numeric type.
4.31
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.23
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.5
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
13.26
Maximum kurtosis among attributes of the numeric type.
-0.02
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
571.46
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.17
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
13.33
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.51
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.63
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.18
Third quartile of skewness among attributes of the numeric type.
82.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.12
First quartile of kurtosis among attributes of the numeric type.
1.66
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.11
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.16
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
19.53
Mean of means among attributes of the numeric type.
-0.33
First quartile of skewness among attributes of the numeric type.
0.44
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.19
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task