Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5973

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5973

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5973 (TID: 101402), and it has 97 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric84 unique values
0 missing
molecule_id (row identifier)nominal97 unique values
0 missing
SM03_EA.bo.numeric44 unique values
0 missing
SpMax2_Bh.m.numeric92 unique values
0 missing
SM05_EA.bo.numeric69 unique values
0 missing
SM15_EAnumeric75 unique values
0 missing
SM09_EA.ed.numeric77 unique values
0 missing
SM10_EA.ed.numeric81 unique values
0 missing
SM11_EAnumeric76 unique values
0 missing
SM11_EA.ed.numeric77 unique values
0 missing
SM12_EAnumeric79 unique values
0 missing
SM12_EA.ed.numeric80 unique values
0 missing
SM13_AEA.ed.numeric80 unique values
0 missing
SM13_EAnumeric74 unique values
0 missing
SM13_EA.ed.numeric76 unique values
0 missing
SM14_AEA.ed.numeric80 unique values
0 missing
SM14_EAnumeric82 unique values
0 missing
SM14_EA.ed.numeric81 unique values
0 missing
SM15_AEA.ed.numeric80 unique values
0 missing
SM15_EA.ed.numeric77 unique values
0 missing
SM06_EA.bo.numeric80 unique values
0 missing
SM05_EAnumeric54 unique values
0 missing
SM08_AEA.bo.numeric78 unique values
0 missing
SM06_AEA.bo.numeric80 unique values
0 missing
SM07_AEA.bo.numeric81 unique values
0 missing
SM07_EAnumeric69 unique values
0 missing
ZM1Madnumeric90 unique values
0 missing
X2vnumeric96 unique values
0 missing
SM07_EA.ed.numeric75 unique values
0 missing
SM08_EA.ed.numeric81 unique values
0 missing
SM10_EAnumeric81 unique values
0 missing
SpDiam_EA.ed.numeric81 unique values
0 missing
MATS2vnumeric81 unique values
0 missing
nHetnumeric13 unique values
0 missing
SM08_EA.bo.numeric78 unique values
0 missing
SM11_AEA.ed.numeric80 unique values
0 missing
SM12_AEA.ed.numeric78 unique values
0 missing
SM07_EA.bo.numeric70 unique values
0 missing
X3vnumeric92 unique values
0 missing
SM09_EA.bo.numeric74 unique values
0 missing
SM10_EA.bo.numeric82 unique values
0 missing
Eig02_EA.bo.numeric81 unique values
0 missing
SM12_AEA.ri.numeric81 unique values
0 missing
SM08_EAnumeric81 unique values
0 missing
SpDiam_AEA.ri.numeric81 unique values
0 missing
SM09_EAnumeric73 unique values
0 missing
Eig02_AEA.ri.numeric88 unique values
0 missing
Eig01_EAnumeric67 unique values
0 missing
SM09_AEA.bo.numeric67 unique values
0 missing
SM10_AEA.ed.numeric79 unique values
0 missing
SpMax_EAnumeric67 unique values
0 missing
ATSC6snumeric95 unique values
0 missing
ATSC2snumeric96 unique values
0 missing
SddssSnumeric45 unique values
0 missing
ATS1mnumeric85 unique values
0 missing
SM06_EA.ed.numeric80 unique values
0 missing
SM05_EA.ed.numeric73 unique values
0 missing
SM07_AEA.ed.numeric81 unique values
0 missing
Eig01_AEA.ed.numeric70 unique values
0 missing
Eig01_EA.ed.numeric75 unique values
0 missing
SM10_AEA.dm.numeric75 unique values
0 missing
SpMax_AEA.ed.numeric70 unique values
0 missing
SpMax_EA.ed.numeric75 unique values
0 missing
SM04_EA.ed.numeric80 unique values
0 missing
SM08_AEA.ed.numeric79 unique values
0 missing
SM09_AEA.ed.numeric78 unique values
0 missing
SM15_EA.bo.numeric74 unique values
0 missing

62 properties

97
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.69
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
3.88
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-1.75
Mean skewness among attributes of the numeric type.
11.6
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.55
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.9
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.31
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
2
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.18
Maximum kurtosis among attributes of the numeric type.
-2.2
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
124.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.49
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
19.33
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.21
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.63
Maximum skewness among attributes of the numeric type.
0.14
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-1.46
Third quartile of skewness among attributes of the numeric type.
61
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
2.6
First quartile of kurtosis among attributes of the numeric type.
3.13
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
5.84
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.7
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
15.59
Mean of means among attributes of the numeric type.
-2.73
First quartile of skewness among attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
1.13
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task