Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4051

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4051

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4051 (TID: 11540), and it has 144 rows and 43 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Basic Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median).

45 features

pXC50 (target)numeric101 unique values
0 missing
molecule_id (row identifier)nominal144 unique values
0 missing
AMWnumeric106 unique values
0 missing
C.numeric47 unique values
0 missing
H.numeric71 unique values
0 missing
Menumeric48 unique values
0 missing
Minumeric36 unique values
0 missing
Mpnumeric73 unique values
0 missing
Mvnumeric84 unique values
0 missing
MWnumeric109 unique values
0 missing
N.numeric37 unique values
0 missing
nABnumeric9 unique values
0 missing
nATnumeric38 unique values
0 missing
nBnumeric1 unique values
0 missing
nBMnumeric12 unique values
0 missing
nBOnumeric27 unique values
0 missing
nBRnumeric3 unique values
0 missing
nBTnumeric38 unique values
0 missing
nCnumeric20 unique values
0 missing
nCLnumeric3 unique values
0 missing
nCspnumeric1 unique values
0 missing
nCsp2numeric17 unique values
0 missing
nCsp3numeric14 unique values
0 missing
nDBnumeric7 unique values
0 missing
nFnumeric6 unique values
0 missing
nHnumeric29 unique values
0 missing
nHetnumeric13 unique values
0 missing
nHMnumeric5 unique values
0 missing
nInumeric2 unique values
0 missing
nNnumeric5 unique values
0 missing
nOnumeric7 unique values
0 missing
nPnumeric1 unique values
0 missing
nSnumeric5 unique values
0 missing
nSKnumeric25 unique values
0 missing
nTBnumeric1 unique values
0 missing
nXnumeric7 unique values
0 missing
O.numeric53 unique values
0 missing
RBFnumeric53 unique values
0 missing
RBNnumeric12 unique values
0 missing
SCBOnumeric43 unique values
0 missing
Senumeric108 unique values
0 missing
Sinumeric109 unique values
0 missing
Spnumeric108 unique values
0 missing
Svnumeric109 unique values
0 missing
X.numeric30 unique values
0 missing

62 properties

144
Number of instances (rows) of the dataset.
45
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
44
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.31
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.53
Mean skewness among attributes of the numeric type.
4.47
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.34
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.31
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.28
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
2.24
Second quartile (Median) of standard deviation of attributes of the numeric type.
44.6
Maximum kurtosis among attributes of the numeric type.
0
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
456.46
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.81
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
97.78
Percentage of numeric attributes.
34.68
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.25
Minimum skewness among attributes of the numeric type.
2.22
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.78
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.93
Third quartile of skewness among attributes of the numeric type.
72.32
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.99
First quartile of kurtosis among attributes of the numeric type.
6.58
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.77
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.47
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
25.36
Mean of means among attributes of the numeric type.
-0.19
First quartile of skewness among attributes of the numeric type.
0.47
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.37
First quartile of standard deviation of attributes of the numeric type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task