Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2319

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2319

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2319 (TID: 13005), and it has 124 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric80 unique values
0 missing
molecule_id (row identifier)nominal124 unique values
0 missing
SpMax2_Bh.p.numeric78 unique values
0 missing
SpMax2_Bh.v.numeric66 unique values
0 missing
SpMin2_Bh.i.numeric62 unique values
0 missing
SpMax2_Bh.e.numeric74 unique values
0 missing
SM04_EA.bo.numeric103 unique values
0 missing
PCRnumeric91 unique values
0 missing
P_VSA_LogP_3numeric44 unique values
0 missing
MATS1enumeric91 unique values
0 missing
N.069numeric3 unique values
0 missing
NaasNnumeric3 unique values
0 missing
PCDnumeric101 unique values
0 missing
P_VSA_s_4numeric72 unique values
0 missing
piIDnumeric101 unique values
0 missing
C.028numeric2 unique values
0 missing
CATS2D_04_AAnumeric5 unique values
0 missing
MATS6snumeric100 unique values
0 missing
CATS2D_02_APnumeric5 unique values
0 missing
PDInumeric71 unique values
0 missing
Uinumeric24 unique values
0 missing
piPC05numeric104 unique values
0 missing
nPyrazolesnumeric2 unique values
0 missing
SpMax3_Bh.m.numeric83 unique values
0 missing
SM06_EA.bo.numeric107 unique values
0 missing
H.051numeric6 unique values
0 missing
Eig03_EA.bo.numeric83 unique values
0 missing
SM13_AEA.ri.numeric83 unique values
0 missing
SpMin3_Bh.m.numeric82 unique values
0 missing
CATS2D_05_PLnumeric6 unique values
0 missing
GATS3vnumeric87 unique values
0 missing
C.024numeric16 unique values
0 missing
MATS6mnumeric111 unique values
0 missing
Eig01_AEA.dm.numeric68 unique values
0 missing
SpMax_AEA.dm.numeric68 unique values
0 missing
MATS6enumeric112 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
MATS1vnumeric70 unique values
0 missing
C.034numeric4 unique values
0 missing
SpMax4_Bh.i.numeric85 unique values
0 missing
H.050numeric12 unique values
0 missing
nHDonnumeric12 unique values
0 missing
CATS2D_06_PLnumeric5 unique values
0 missing
piPC04numeric91 unique values
0 missing
PW5numeric32 unique values
0 missing
GATS1enumeric101 unique values
0 missing
Eig02_AEA.bo.numeric83 unique values
0 missing
SM08_EA.bo.numeric105 unique values
0 missing
P_VSA_MR_6numeric86 unique values
0 missing
nABnumeric14 unique values
0 missing
SpMin5_Bh.v.numeric97 unique values
0 missing
MATS1inumeric99 unique values
0 missing
nBMnumeric25 unique values
0 missing
Ucnumeric25 unique values
0 missing
P_VSA_LogP_2numeric54 unique values
0 missing
SpMAD_EA.bo.numeric99 unique values
0 missing
GATS1vnumeric98 unique values
0 missing
GATS6enumeric113 unique values
0 missing
Eig09_AEA.ed.numeric97 unique values
0 missing
SM05_EA.bo.numeric97 unique values
0 missing
SM09_EA.bo.numeric104 unique values
0 missing
Eig02_EA.bo.numeric83 unique values
0 missing
SM12_AEA.ri.numeric83 unique values
0 missing
SM11_EA.bo.numeric102 unique values
0 missing
SM12_EA.bo.numeric102 unique values
0 missing
GATS6inumeric102 unique values
0 missing
nBnznumeric5 unique values
0 missing
NdOnumeric11 unique values
0 missing

62 properties

124
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.55
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
0.13
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.19
Mean skewness among attributes of the numeric type.
3.59
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
3.23
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.05
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.49
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
74.95
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
135.64
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.68
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
5.57
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.6
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
7.45
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.73
Third quartile of skewness among attributes of the numeric type.
46.31
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.54
First quartile of kurtosis among attributes of the numeric type.
1.11
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.87
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.91
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
10.2
Mean of means among attributes of the numeric type.
-0.65
First quartile of skewness among attributes of the numeric type.
-0.09
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.16
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task