Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3663

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3663

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3663 (TID: 12179), and it has 274 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric228 unique values
0 missing
molecule_id (row identifier)nominal274 unique values
0 missing
Eig03_EA.bo.numeric95 unique values
0 missing
SM13_AEA.ri.numeric95 unique values
0 missing
Eig02_EA.ri.numeric83 unique values
0 missing
Eig02_AEA.ri.numeric83 unique values
0 missing
Eig04_AEA.bo.numeric135 unique values
0 missing
SpMax1_Bh.p.numeric108 unique values
0 missing
SpMax2_Bh.m.numeric129 unique values
0 missing
SpMax3_Bh.m.numeric118 unique values
0 missing
Eig02_EAnumeric84 unique values
0 missing
SM10_AEA.bo.numeric84 unique values
0 missing
SpMax1_Bh.m.numeric67 unique values
0 missing
MAXDNnumeric215 unique values
0 missing
Eig04_EA.bo.numeric126 unique values
0 missing
SM14_AEA.ri.numeric126 unique values
0 missing
P_VSA_LogP_3numeric73 unique values
0 missing
Eig03_EA.ri.numeric133 unique values
0 missing
Eig03_AEA.bo.numeric117 unique values
0 missing
GATS7mnumeric144 unique values
0 missing
GATS8pnumeric164 unique values
0 missing
P_VSA_MR_7numeric28 unique values
0 missing
SdsssPnumeric133 unique values
0 missing
Eig02_EA.ed.numeric101 unique values
0 missing
SM11_AEA.dm.numeric101 unique values
0 missing
Eig04_AEA.ri.numeric142 unique values
0 missing
SpMax2_Bh.p.numeric125 unique values
0 missing
Eig02_AEA.ed.numeric85 unique values
0 missing
O.056numeric5 unique values
0 missing
GATS6pnumeric163 unique values
0 missing
SpMax4_Bh.p.numeric120 unique values
0 missing
Eig03_AEA.ri.numeric128 unique values
0 missing
SpMAD_AEA.ri.numeric67 unique values
0 missing
NdsssPnumeric3 unique values
0 missing
nPnumeric3 unique values
0 missing
P_VSA_p_4numeric7 unique values
0 missing
P_VSA_s_1numeric9 unique values
0 missing
SpMAD_EAnumeric68 unique values
0 missing
Eig02_AEA.bo.numeric94 unique values
0 missing
Eig03_EAnumeric134 unique values
0 missing
SM11_AEA.bo.numeric134 unique values
0 missing
SpMax3_Bh.v.numeric120 unique values
0 missing
SpMAD_EA.ed.numeric177 unique values
0 missing
SpMin3_Bh.e.numeric95 unique values
0 missing
Eig04_EA.ri.numeric128 unique values
0 missing
P_VSA_MR_3numeric10 unique values
0 missing
SM05_EA.bo.numeric185 unique values
0 missing
SpMax2_Bh.e.numeric123 unique values
0 missing
MATS2enumeric156 unique values
0 missing
Eig03_EA.ed.numeric115 unique values
0 missing
SM12_AEA.dm.numeric115 unique values
0 missing
MATS2snumeric144 unique values
0 missing
Eig03_AEA.ed.numeric97 unique values
0 missing
SpMax4_Bh.m.numeric125 unique values
0 missing
Eig04_EA.ed.numeric140 unique values
0 missing
SM13_AEA.dm.numeric140 unique values
0 missing
GATS2pnumeric163 unique values
0 missing
Eig04_EAnumeric132 unique values
0 missing
SM12_AEA.bo.numeric132 unique values
0 missing
SM13_EA.bo.numeric206 unique values
0 missing
SM15_EA.bo.numeric201 unique values
0 missing
IC1numeric201 unique values
0 missing
Eig05_EA.bo.numeric151 unique values
0 missing
SM15_AEA.ri.numeric151 unique values
0 missing
SM08_EA.bo.numeric200 unique values
0 missing
SpMAD_AEA.bo.numeric68 unique values
0 missing
GATS6mnumeric154 unique values
0 missing
SM11_EA.bo.numeric208 unique values
0 missing

62 properties

274
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.25
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
4.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
-0.54
Mean skewness among attributes of the numeric type.
3.72
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.06
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.43
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.66
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.16
Second quartile (Median) of standard deviation of attributes of the numeric type.
74.37
Maximum kurtosis among attributes of the numeric type.
-2.92
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
125.63
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
8.81
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
6.17
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.57
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.4
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.2
Third quartile of skewness among attributes of the numeric type.
57.12
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.18
First quartile of kurtosis among attributes of the numeric type.
0.76
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.06
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.99
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.94
Mean of means among attributes of the numeric type.
-1.81
First quartile of skewness among attributes of the numeric type.
-0.41
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.12
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task