Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3766

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3766

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3766 (TID: 10930), and it has 560 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric273 unique values
0 missing
molecule_id (row identifier)nominal560 unique values
0 missing
D.Dtr07numeric100 unique values
0 missing
nR07numeric3 unique values
0 missing
P_VSA_e_2numeric428 unique values
0 missing
Uinumeric31 unique values
0 missing
Eta_FLnumeric447 unique values
0 missing
P_VSA_i_2numeric428 unique values
0 missing
Eig03_AEA.bo.numeric173 unique values
0 missing
SM04_EA.bo.numeric288 unique values
0 missing
Eig12_EA.bo.numeric245 unique values
0 missing
SpMax3_Bh.m.numeric176 unique values
0 missing
JGI7numeric14 unique values
0 missing
SRW07numeric24 unique values
0 missing
SRW09numeric59 unique values
0 missing
MATS4inumeric271 unique values
0 missing
C.004numeric5 unique values
0 missing
nCqnumeric5 unique values
0 missing
nCrqnumeric5 unique values
0 missing
NssssCnumeric6 unique values
0 missing
X3Anumeric43 unique values
0 missing
Eta_betanumeric167 unique values
0 missing
X4Anumeric33 unique values
0 missing
P_VSA_m_2numeric445 unique values
0 missing
SpMin3_Bh.s.numeric177 unique values
0 missing
X5Anumeric29 unique values
0 missing
nR09numeric3 unique values
0 missing
CATS2D_05_ALnumeric31 unique values
0 missing
BIC5numeric100 unique values
0 missing
Eig04_EA.ed.numeric268 unique values
0 missing
SM13_AEA.dm.numeric268 unique values
0 missing
SpMAD_EA.ed.numeric327 unique values
0 missing
JGI5numeric26 unique values
0 missing
SpMAD_EAnumeric126 unique values
0 missing
JGI3numeric47 unique values
0 missing
CATS2D_06_DAnumeric14 unique values
0 missing
PW3numeric87 unique values
0 missing
SpMAD_AEA.dm.numeric167 unique values
0 missing
SpDiam_AEA.ri.numeric153 unique values
0 missing
SssCH2numeric503 unique values
0 missing
SpMAD_AEA.bo.numeric129 unique values
0 missing
Eta_sh_xnumeric77 unique values
0 missing
SpMAD_AEA.ri.numeric135 unique values
0 missing
JGI2numeric66 unique values
0 missing
nSO2Nnumeric3 unique values
0 missing
H.053numeric6 unique values
0 missing
Eta_B_Anumeric31 unique values
0 missing
GATS6vnumeric258 unique values
0 missing
nBMnumeric28 unique values
0 missing
Ucnumeric28 unique values
0 missing
MATS6pnumeric242 unique values
0 missing
SM07_AEA.bo.numeric335 unique values
0 missing
MATS1enumeric211 unique values
0 missing
nCtnumeric6 unique values
0 missing
X2Anumeric63 unique values
0 missing
C.003numeric5 unique values
0 missing
Eig03_AEA.ri.numeric214 unique values
0 missing
JGI8numeric14 unique values
0 missing
BIC4numeric98 unique values
0 missing
MATS5inumeric240 unique values
0 missing
D.Dtr11numeric66 unique values
0 missing
nR11numeric3 unique values
0 missing
nCrtnumeric6 unique values
0 missing
ARRnumeric144 unique values
0 missing
DLS_04numeric8 unique values
0 missing
C.001numeric8 unique values
0 missing
nCrsnumeric15 unique values
0 missing
nArCONHRnumeric2 unique values
0 missing
GGI3numeric170 unique values
0 missing

62 properties

560
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.12
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
-0.61
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.47
Mean skewness among attributes of the numeric type.
1.2
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
5.75
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.43
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.58
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
11.76
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
217.7
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.42
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
5.42
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.32
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.18
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.71
Third quartile of skewness among attributes of the numeric type.
113.43
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.17
First quartile of kurtosis among attributes of the numeric type.
1.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.29
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.2
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.81
Mean of means among attributes of the numeric type.
-0.03
First quartile of skewness among attributes of the numeric type.
0.03
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.05
First quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task