Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4261

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4261

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4261 (TID: 100325), and it has 217 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric160 unique values
0 missing
molecule_id (row identifier)nominal217 unique values
0 missing
X3Anumeric40 unique values
0 missing
X2Anumeric52 unique values
0 missing
X5Anumeric28 unique values
0 missing
NNRSnumeric9 unique values
0 missing
Rbridnumeric7 unique values
0 missing
RCInumeric23 unique values
0 missing
RFDnumeric23 unique values
0 missing
nCIRnumeric13 unique values
0 missing
D.Dtr12numeric27 unique values
0 missing
piPC09numeric168 unique values
0 missing
nR09numeric4 unique values
0 missing
Eig01_AEA.bo.numeric79 unique values
0 missing
SpMax_AEA.bo.numeric79 unique values
0 missing
MPC09numeric127 unique values
0 missing
MPC08numeric105 unique values
0 missing
X4Anumeric35 unique values
0 missing
PW4numeric58 unique values
0 missing
nCICnumeric7 unique values
0 missing
TRSnumeric20 unique values
0 missing
SaaOnumeric29 unique values
0 missing
D.Dtr09numeric38 unique values
0 missing
MPC04numeric76 unique values
0 missing
C.034numeric4 unique values
0 missing
piPC04numeric157 unique values
0 missing
piPC05numeric159 unique values
0 missing
SM09_EA.bo.numeric151 unique values
0 missing
SM10_EA.bo.numeric160 unique values
0 missing
SM11_EA.bo.numeric153 unique values
0 missing
SM12_EA.bo.numeric160 unique values
0 missing
SM13_EA.bo.numeric161 unique values
0 missing
SM14_EA.bo.numeric162 unique values
0 missing
SM15_EA.bo.numeric160 unique values
0 missing
MPC06numeric100 unique values
0 missing
MWC04numeric136 unique values
0 missing
Eig01_EA.bo.numeric90 unique values
0 missing
SM11_AEA.ri.numeric90 unique values
0 missing
SpDiam_EA.bo.numeric90 unique values
0 missing
SpMax_EA.bo.numeric90 unique values
0 missing
MPC05numeric83 unique values
0 missing
X5vnumeric204 unique values
0 missing
GATS3snumeric176 unique values
0 missing
MWC07numeric154 unique values
0 missing
piPC07numeric172 unique values
0 missing
MWC08numeric158 unique values
0 missing
SpMin6_Bh.s.numeric104 unique values
0 missing
MWC05numeric150 unique values
0 missing
SM06_EA.ri.numeric192 unique values
0 missing
GNarnumeric106 unique values
0 missing
MWC10numeric162 unique values
0 missing
SpAD_EA.ed.numeric170 unique values
0 missing
Qindexnumeric29 unique values
0 missing
SpMax1_Bh.i.numeric91 unique values
0 missing
piPC06numeric164 unique values
0 missing
piPC08numeric170 unique values
0 missing
TPCnumeric135 unique values
0 missing
X4vnumeric204 unique values
0 missing
SM08_EA.ri.numeric189 unique values
0 missing
MWC09numeric160 unique values
0 missing
TWCnumeric165 unique values
0 missing
MWC06numeric158 unique values
0 missing
SRW08numeric145 unique values
0 missing
MPC03numeric57 unique values
0 missing
SpMax1_Bh.p.numeric98 unique values
0 missing
SpMax1_Bh.e.numeric98 unique values
0 missing
piIDnumeric163 unique values
0 missing
GATS5snumeric193 unique values
0 missing

62 properties

217
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
99.88
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
4.53
Third quartile of kurtosis among attributes of the numeric type.
156.17
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
10.28
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.49
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
1.44
Third quartile of skewness among attributes of the numeric type.
8.66
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.68
Third quartile of standard deviation of attributes of the numeric type.
120
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.23
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.06
First quartile of means among attributes of the numeric type.
5.13
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
9.37
Mean of means among attributes of the numeric type.
0.07
First quartile of skewness among attributes of the numeric type.
0.36
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.25
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.31
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
2.34
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.82
Mean skewness among attributes of the numeric type.
5.29
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
4.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.4
Second quartile (Median) of skewness among attributes of the numeric type.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.28
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task