Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4426

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4426

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4426 (TID: 12651), and it has 449 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric328 unique values
0 missing
molecule_id (row identifier)nominal449 unique values
0 missing
nRCONH2numeric2 unique values
0 missing
SpMax1_Bh.i.numeric212 unique values
0 missing
SpMax1_Bh.e.numeric221 unique values
0 missing
SpMax1_Bh.v.numeric220 unique values
0 missing
CATS2D_06_APnumeric3 unique values
0 missing
CATS2D_05_APnumeric3 unique values
0 missing
Eig01_EA.bo.numeric301 unique values
0 missing
SM11_AEA.ri.numeric301 unique values
0 missing
SpDiam_EA.bo.numeric306 unique values
0 missing
SpMax_EA.bo.numeric301 unique values
0 missing
nPyrrolesnumeric3 unique values
0 missing
SdssCnumeric365 unique values
0 missing
CATS2D_07_PLnumeric7 unique values
0 missing
CATS2D_02_APnumeric4 unique values
0 missing
CATS2D_09_APnumeric3 unique values
0 missing
SM15_EA.bo.numeric390 unique values
0 missing
CATS2D_09_PLnumeric6 unique values
0 missing
SM14_EA.bo.numeric388 unique values
0 missing
C.034numeric6 unique values
0 missing
SM13_EA.bo.numeric388 unique values
0 missing
SM12_EA.bo.numeric382 unique values
0 missing
ATS6snumeric396 unique values
0 missing
ATSC3snumeric447 unique values
0 missing
ATS8snumeric401 unique values
0 missing
CATS2D_08_PLnumeric6 unique values
0 missing
Eig01_EA.ri.numeric291 unique values
0 missing
SpDiam_EA.ri.numeric291 unique values
0 missing
SpMax_EA.ri.numeric291 unique values
0 missing
SM11_EA.bo.numeric383 unique values
0 missing
SM09_EA.bo.numeric388 unique values
0 missing
ATS7snumeric385 unique values
0 missing
SM08_EA.bo.numeric374 unique values
0 missing
CATS2D_09_DPnumeric3 unique values
0 missing
SM15_EA.ri.numeric406 unique values
0 missing
SM10_EA.bo.numeric393 unique values
0 missing
GGI5numeric303 unique values
0 missing
ATS7enumeric405 unique values
0 missing
SM13_EA.ri.numeric399 unique values
0 missing
SM14_EA.ri.numeric402 unique values
0 missing
Eig01_AEA.ri.numeric293 unique values
0 missing
SpMax_AEA.ri.numeric293 unique values
0 missing
SM12_EA.ri.numeric394 unique values
0 missing
CATS2D_08_PNnumeric2 unique values
0 missing
D.Dtr09numeric160 unique values
0 missing
SM07_EA.bo.numeric373 unique values
0 missing
ATS7inumeric397 unique values
0 missing
X4Anumeric60 unique values
0 missing
ATS8inumeric401 unique values
0 missing
MATS3pnumeric274 unique values
0 missing
ATS8enumeric401 unique values
0 missing
SM11_EA.ri.numeric386 unique values
0 missing
ATS6enumeric394 unique values
0 missing
ATSC6inumeric409 unique values
0 missing
CATS2D_09_DAnumeric6 unique values
0 missing
ATS6vnumeric390 unique values
0 missing
ATSC6pnumeric439 unique values
0 missing
ATSC7pnumeric444 unique values
0 missing
GGI7numeric306 unique values
0 missing
nArCOnumeric3 unique values
0 missing
SpMax1_Bh.p.numeric224 unique values
0 missing
ATSC8mnumeric444 unique values
0 missing
MATS3inumeric270 unique values
0 missing
PW5numeric70 unique values
0 missing
ATSC8vnumeric446 unique values
0 missing
SM11_EA.ed.numeric380 unique values
0 missing
CATS2D_08_DNnumeric2 unique values
0 missing
SM10_EA.ri.numeric385 unique values
0 missing
ATS5vnumeric386 unique values
0 missing
CATS2D_09_DDnumeric3 unique values
0 missing

62 properties

449
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
30.47
Maximum kurtosis among attributes of the numeric type.
-0.65
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
4.61
Third quartile of kurtosis among attributes of the numeric type.
57.05
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
12.08
Third quartile of means among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
The maximum number of distinct values among attributes of the nominal type.
-1.99
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
1.3
Third quartile of skewness among attributes of the numeric type.
3.73
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.02
Third quartile of standard deviation of attributes of the numeric type.
63.84
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.21
First quartile of kurtosis among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.5
First quartile of means among attributes of the numeric type.
3.14
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.8
Mean of means among attributes of the numeric type.
-0.52
First quartile of skewness among attributes of the numeric type.
0.34
Average class difference between consecutive instances.
Average mutual information between the nominal attributes and the target attribute.
0.37
First quartile of standard deviation of attributes of the numeric type.
Entropy of the target attribute values.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
0.16
Number of attributes divided by the number of instances.
Average number of distinct values among the attributes of the nominal type.
1.85
Second quartile (Median) of kurtosis among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.22
Mean skewness among attributes of the numeric type.
4.32
Second quartile (Median) of means among attributes of the numeric type.
Percentage of instances belonging to the most frequent class.
2.4
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.01
Second quartile (Median) of skewness among attributes of the numeric type.
0.53
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
-1.07
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task