Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1250375

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1250375

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1250375 (TID: 103508), and it has 110 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric92 unique values
0 missing
molecule_id (row identifier)nominal110 unique values
0 missing
GATS1enumeric86 unique values
0 missing
MATS1enumeric72 unique values
0 missing
NsssNnumeric5 unique values
0 missing
SsssNnumeric85 unique values
0 missing
CATS2D_05_AAnumeric7 unique values
0 missing
MATS1mnumeric69 unique values
0 missing
CATS2D_02_AAnumeric6 unique values
0 missing
MATS1snumeric76 unique values
0 missing
GATS1snumeric69 unique values
0 missing
Eig02_AEA.dm.numeric60 unique values
0 missing
D.Dtr07numeric13 unique values
0 missing
D.Dtr11numeric13 unique values
0 missing
nR07numeric2 unique values
0 missing
nR11numeric2 unique values
0 missing
SAdonnumeric23 unique values
0 missing
SM15_EA.ri.numeric101 unique values
0 missing
Eta_C_Anumeric100 unique values
0 missing
Hynumeric76 unique values
0 missing
PDInumeric71 unique values
0 missing
nArOHnumeric6 unique values
0 missing
SsOHnumeric28 unique values
0 missing
SM03_EA.dm.numeric13 unique values
0 missing
SM05_EA.dm.numeric24 unique values
0 missing
SM07_EA.dm.numeric30 unique values
0 missing
SM09_EA.dm.numeric30 unique values
0 missing
SM11_EA.dm.numeric29 unique values
0 missing
SM13_EA.dm.numeric29 unique values
0 missing
SM15_EA.dm.numeric28 unique values
0 missing
CATS2D_02_ALnumeric18 unique values
0 missing
nRCONR2numeric3 unique values
0 missing
Eig02_EA.dm.numeric15 unique values
0 missing
H.050numeric8 unique values
0 missing
nHDonnumeric8 unique values
0 missing
P_VSA_e_5numeric29 unique values
0 missing
P_VSA_p_2numeric63 unique values
0 missing
O.057numeric6 unique values
0 missing
GATS2pnumeric87 unique values
0 missing
SM13_EA.ri.numeric104 unique values
0 missing
nCb.numeric10 unique values
0 missing
nCconjnumeric7 unique values
0 missing
NdssCnumeric6 unique values
0 missing
nN.Nnumeric3 unique values
0 missing
nR.Csnumeric4 unique values
0 missing
SM14_EA.ri.numeric105 unique values
0 missing
SpMin4_Bh.s.numeric84 unique values
0 missing
SpDiam_AEA.ed.numeric80 unique values
0 missing
SpMax1_Bh.i.numeric63 unique values
0 missing
SdOnumeric106 unique values
0 missing
P_VSA_v_2numeric68 unique values
0 missing
SAaccnumeric67 unique values
0 missing
Cl.089numeric3 unique values
0 missing
nCLnumeric3 unique values
0 missing
NsClnumeric3 unique values
0 missing
P_VSA_e_4numeric3 unique values
0 missing
Eig01_AEA.dm.numeric66 unique values
0 missing
NsOHnumeric7 unique values
0 missing
SpDiam_AEA.dm.numeric66 unique values
0 missing
SpMax_AEA.dm.numeric66 unique values
0 missing
TPSA.Tot.numeric66 unique values
0 missing
NaasCnumeric10 unique values
0 missing
X3vnumeric108 unique values
0 missing
nCpnumeric5 unique values
0 missing
SM12_EA.ri.numeric103 unique values
0 missing

62 properties

110
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.72
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.8
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
13.17
Mean of means among attributes of the numeric type.
-0.46
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.46
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.59
Number of attributes divided by the number of instances.
0.7
Mean skewness among attributes of the numeric type.
2.62
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
8.04
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.99
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.82
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.13
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
17
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
123.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.75
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
7.25
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.11
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.13
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.92
Third quartile of skewness among attributes of the numeric type.
68.64
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.43
First quartile of kurtosis among attributes of the numeric type.
2.34
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task