Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1820

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1820

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1820 (TID: 213), and it has 114 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric88 unique values
0 missing
molecule_id (row identifier)nominal114 unique values
0 missing
GGI4numeric63 unique values
0 missing
Eig06_EA.ed.numeric72 unique values
0 missing
SM15_AEA.dm.numeric72 unique values
0 missing
Eig07_AEA.dm.numeric76 unique values
0 missing
Eig08_AEA.dm.numeric85 unique values
0 missing
Eig07_EA.dm.numeric6 unique values
0 missing
Eig08_EA.dm.numeric5 unique values
0 missing
Eig05_AEA.dm.numeric86 unique values
0 missing
SdOnumeric58 unique values
0 missing
GGI2numeric24 unique values
0 missing
TIC2numeric92 unique values
0 missing
Eig05_AEA.ed.numeric64 unique values
0 missing
Eig05_EA.ed.numeric67 unique values
0 missing
SM14_AEA.dm.numeric67 unique values
0 missing
MPC05numeric58 unique values
0 missing
MPC07numeric60 unique values
0 missing
X3Anumeric23 unique values
0 missing
Eig03_EAnumeric60 unique values
0 missing
Eta_Bnumeric52 unique values
0 missing
SM11_AEA.bo.numeric60 unique values
0 missing
Eig07_AEA.bo.numeric64 unique values
0 missing
Eig09_AEA.ed.numeric67 unique values
0 missing
Eig10_AEA.ed.numeric69 unique values
0 missing
SpMin7_Bh.p.numeric91 unique values
0 missing
Eig04_AEA.dm.numeric73 unique values
0 missing
Eig02_AEA.dm.numeric77 unique values
0 missing
nRCONHRnumeric2 unique values
0 missing
ATS4mnumeric104 unique values
0 missing
SpMin7_Bh.v.numeric83 unique values
0 missing
ATS4snumeric104 unique values
0 missing
Eig04_EA.ed.numeric59 unique values
0 missing
Eig07_EA.bo.numeric64 unique values
0 missing
ON0numeric55 unique values
0 missing
SM13_AEA.dm.numeric59 unique values
0 missing
SPInumeric78 unique values
0 missing
Eig03_EA.ed.numeric60 unique values
0 missing
SM12_AEA.dm.numeric60 unique values
0 missing
Eig06_AEA.ri.numeric94 unique values
0 missing
Eig06_EAnumeric68 unique values
0 missing
nCb.numeric7 unique values
0 missing
SM14_AEA.bo.numeric68 unique values
0 missing
Eig06_AEA.dm.numeric81 unique values
0 missing
GGI8numeric59 unique values
0 missing
C.003numeric2 unique values
0 missing
SpMax6_Bh.e.numeric84 unique values
0 missing
SpMax6_Bh.i.numeric79 unique values
0 missing
Eig06_EA.ri.numeric95 unique values
0 missing
Eig12_AEA.ri.numeric80 unique values
0 missing
Eig12_EAnumeric61 unique values
0 missing
Eig12_EA.ri.numeric95 unique values
0 missing
MPC04numeric52 unique values
0 missing
MPC06numeric60 unique values
0 missing
MPC08numeric65 unique values
0 missing
MPC09numeric63 unique values
0 missing
nCIRnumeric8 unique values
0 missing
PW4numeric41 unique values
0 missing
PW5numeric27 unique values
0 missing
SM06_AEA.dm.numeric61 unique values
0 missing
SpMax6_Bh.p.numeric77 unique values
0 missing
X4solnumeric89 unique values
0 missing
X5solnumeric90 unique values
0 missing
D.Dtr10numeric15 unique values
0 missing
nR10numeric3 unique values
0 missing

62 properties

114
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.29
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.64
Mean of means among attributes of the numeric type.
0.03
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.38
First quartile of standard deviation of attributes of the numeric type.
-0.08
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.56
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.57
Number of attributes divided by the number of instances.
0.47
Mean skewness among attributes of the numeric type.
2.97
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.95
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.26
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.51
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.55
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
33.59
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
213.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
-0.06
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
5.02
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.76
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.45
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.64
Third quartile of skewness among attributes of the numeric type.
111.16
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.05
First quartile of kurtosis among attributes of the numeric type.
1.32
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task