Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4901

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4901

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4901 (TID: 100416), and it has 122 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric35 unique values
0 missing
molecule_id (row identifier)nominal122 unique values
0 missing
SpMin7_Bh.v.numeric105 unique values
0 missing
TPSA.Tot.numeric98 unique values
0 missing
TPSA.NO.numeric95 unique values
0 missing
P_VSA_p_2numeric102 unique values
0 missing
SpMin7_Bh.p.numeric105 unique values
0 missing
MATS2inumeric103 unique values
0 missing
GATS1mnumeric98 unique values
0 missing
ATSC1snumeric116 unique values
0 missing
Eig05_EA.ed.numeric108 unique values
0 missing
SM14_AEA.dm.numeric108 unique values
0 missing
ATS4inumeric116 unique values
0 missing
ATSC4vnumeric119 unique values
0 missing
ATS2inumeric108 unique values
0 missing
SpMax6_Bh.i.numeric94 unique values
0 missing
SpMin7_Bh.i.numeric97 unique values
0 missing
SpMin7_Bh.m.numeric91 unique values
0 missing
TIC1numeric112 unique values
0 missing
SAaccnumeric101 unique values
0 missing
ON1Vnumeric112 unique values
0 missing
ARRnumeric73 unique values
0 missing
ATS6enumeric110 unique values
0 missing
TIC2numeric112 unique values
0 missing
SpMin7_Bh.e.numeric100 unique values
0 missing
ATSC5vnumeric121 unique values
0 missing
IC2numeric110 unique values
0 missing
ATSC7mnumeric119 unique values
0 missing
ATSC6vnumeric119 unique values
0 missing
Chi0_EA.dm.numeric108 unique values
0 missing
MPC09numeric92 unique values
0 missing
P_VSA_v_2numeric105 unique values
0 missing
ATS7inumeric112 unique values
0 missing
X5vnumeric118 unique values
0 missing
ATS2enumeric106 unique values
0 missing
ATS4enumeric112 unique values
0 missing
ATS1inumeric108 unique values
0 missing
SpMax6_Bh.e.numeric95 unique values
0 missing
Mpnumeric75 unique values
0 missing
SpMin8_Bh.p.numeric93 unique values
0 missing
SpMax4_Bh.i.numeric110 unique values
0 missing
GATS1enumeric95 unique values
0 missing
SpMin6_Bh.p.numeric100 unique values
0 missing
ATS8inumeric113 unique values
0 missing
SpMin6_Bh.v.numeric103 unique values
0 missing
ATSC2vnumeric115 unique values
0 missing
SpMin4_Bh.p.numeric101 unique values
0 missing
SpMin4_Bh.v.numeric106 unique values
0 missing
ATS7enumeric111 unique values
0 missing
SpMin4_Bh.i.numeric107 unique values
0 missing
ATS5inumeric117 unique values
0 missing
ATSC2snumeric119 unique values
0 missing
SpMin4_Bh.e.numeric108 unique values
0 missing
Eta_C_Anumeric107 unique values
0 missing
Eig06_AEA.bo.numeric95 unique values
0 missing
ATS3inumeric110 unique values
0 missing
CIC0numeric103 unique values
0 missing
ATSC4inumeric115 unique values
0 missing
ATS3enumeric115 unique values
0 missing
Eig05_AEA.ed.numeric102 unique values
0 missing
SpMin5_Bh.e.numeric99 unique values
0 missing
ATSC5mnumeric121 unique values
0 missing
ATSC7pnumeric117 unique values
0 missing
SpMax8_Bh.i.numeric87 unique values
0 missing
ATSC2mnumeric113 unique values
0 missing
SpMax5_Bh.e.numeric111 unique values
0 missing
SpMin6_Bh.m.numeric100 unique values
0 missing

62 properties

122
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.41
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.36
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
18.88
Mean of means among attributes of the numeric type.
-0.07
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.22
First quartile of standard deviation of attributes of the numeric type.
0.41
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.53
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.55
Number of attributes divided by the number of instances.
0.35
Mean skewness among attributes of the numeric type.
4.58
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6.84
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.06
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.16
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
14.62
Maximum kurtosis among attributes of the numeric type.
-0.01
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
230.64
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.02
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
9.62
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.54
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.39
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.57
Third quartile of skewness among attributes of the numeric type.
80.48
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.8
First quartile of kurtosis among attributes of the numeric type.
5.53
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task